atlas inner b layer co 2 cooling system
play

Atlas Inner B-Layer CO 2 cooling system (Can we use Marco?) 01 March - PowerPoint PPT Presentation

bverlaat@nikhef.nl bverlaat@nikhef.nl Atlas Inner B-Layer CO 2 cooling system (Can we use Marco?) 01 March 2012 Bart Verlaat Jan Godlewski 1 bverlaat@nikhef.nl Atlas Inner B-Layer (IBL) IBL detector: 80mm x 800mm 1 kW @ -40C


  1. bverlaat@nikhef.nl bverlaat@nikhef.nl Atlas Inner B-Layer CO 2 cooling system (Can we use Marco?) 01 March 2012 Bart Verlaat Jan Godlewski 1

  2. bverlaat@nikhef.nl Atlas Inner B-Layer (IBL) IBL detector: • Ø80mm x 800mm • 1 kW @ -40°C • 14 staves with 1 cooling pipe Pixel detector chips (71 watt/stave) New detector with smaller beam Carbon foam structure 2 pipe in space of current beam pipe 1.5mm ID titanium cooling pipe

  3. bverlaat@nikhef.nl IBL cooling layout in Atlas Vacuum insulated Accessible manifolds concentric transfer tube Vacuum insulated capillaries Tile Calorie LAR LAR Capillaries in IDep Tracking LAR 14 IBL staves 3

  4. Atlas IBL cooling system bverlaat@nikhef.nl Vacuum insulated concentric tube Junction box @ Muon Sector 5 (Accessible) (~13 m) PM027 PR007 PR008 PT007 PT008 TT007 TT008 ⅜” HX007 8 7 Transfer tubes PR017 VL008 HX016 PT017 FL008 (~100m) TT017 HT011 17 VL009 Dummy load (testing only) VL016 16 HT011.temp Detector boundary LAR Cryo area HT011.thsw PR016 PR009 ½” PT016 PT009 9 TT016 ⅜” TT009 ⅜” VL011 VL010 Cooling VL017 FL010 ½” Unit A VL025 Vacuum lines PR010 VL006 10 PT010 TT010 Vacuum Cooling insulation VL018 15 Unit B Vacuum VL007 insulation Tile calorie meter 2 Marco’s? LAR calorie meter 11 14 Tracking detectors 12 13 14 IBL staves (7 flow pairs) (7x A- › C flow / 7x C- ›A flow) 4 Dry volume USA-15

  5. IBL Cooling pipes layout bverlaat@nikhef.nl (C-Side view) Foam insulated junction piping (With condensation channels) Vacuum insulated straight concentric transfer tube Vacuum insulated capillaries LAR station To USA-15 cavern Foam insulated transfer tubing (Concentric TBV) Inlet Manifold Inlet Capillaries (Outlets on the A-side) 5

  6. Transfer tube routing bverlaat@nikhef.nl to cooling plant • A nearly horizontal path from cooling plant to detector. Accumulated eight difference =7m => 1.4°C dT • Ca. 100 long path (1 way) • Vacuum insulation in detector to avoid condensation problems – Needs serious research, just a concept now! • Insulation will be foam outside detector from LAR cryogenic plant towards CO 2 cooling plant. 6

  7. bverlaat@nikhef.nl IBL cooling specs IBL temperature and pressure profile. MF=1g/s, Tsp=-40ºC, Q=71.43, x end =0.31 -20 15 T Structure (ºC) T Tube wall (ºC) T Fluid (ºC) -25 14 P Fluid (Bar) Temperature (ºC) -30 13 Pressure(Bar) -35 12 -40 11 1 2 3 4 5 6 7 -45 10 0 5 10 15 20 25 Branch length (m) The 1kW power and sensors at -20°C require a CO 2 temperature of -40°C (2-phase) / -50°C (Liquid) 7

  8. IBL transfer tube bverlaat@nikhef.nl Liquid pressure drop of an Atlas IBL supply tube Fluid=CO 2 , T=-40 ºC, Length=100 m, Angle=0º, Roughness=0 mu, Po=10 bar 0.25" OD, t=0.035" 2 0.3125" OD, t=0.035" • IBL tube: Concentric 3 / 4 ” 0.375" OD, t=0.035" Tur 1.5 outer x 5 / 16 ” inner tube. Pressure drop (bar) Tur • Heat leak estimation: 1kW 1 Tur Tur => Marco cooling capacity: Tur 0.5 Tur 2.5 kW @-50°C Tur Tur Tur Tur Tur Tur Tur Tur Tur Tur Tur Tur Tur Tur Lam Tur Tur Tur Tur 0 Lam Lam Lam Lam Lam 0 2 4 6 8 10 12 14 Mass flow (g/s) 2-phase pressure drop of an Atlas IBL return tube T fluid =-40 ºC, T amb =22 ºC, Ki=0.04 W/mK, Length=100 m, Angle=0º 25 3000 Fluid=CO 2 , MF=14 g/s, T=-40 ºC, Length=100 m, Angle=0º 0.75" OD, t=0.049" 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 QE(kW) Surface temperature 2 Concentric 0.75" OD, t=0.049" with 0.3125" center tube 20 Heat pick up 2500 0.7 1.6 Heat pick-up (W) 0.6 SW Surface temperature (ºC) 15 2000 Temperature drop (ºC) Pressure drop (bar) SW 0.5 1.2 SW 10 1500 0.4 SW 0.3 0.8 5 1000 SW SW 0.2 0.4 SW 0 500 0.1 SW Strat Tur 8 0 0 -5 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 10 20 30 40 50 60 70 Vapor Quality (-) Insulation thickness (mm)

  9. bverlaat@nikhef.nl IBL Accumulator sizing Ral s =2.01 • Concentric 3 / 4 ” outer x 5 / 16 ” 100ºC 75ºC 140 50ºC 25ºC -25ºC C C º º 0 0 5 inner tube *100m = 20 liter => - 120 30ºC C C Ratio Accu/loop = 2x => 40 º MOP º 2 0 100 2 5 - liter accumulator. 80 Pressure (Bar) T liq 25ºC 60 x=0.8 x=0.4 x=0.2 40 • Does this fit in  =0.9 20  =0.8  =0.6  =0.4  =0.2 Marco? 0 ASC=482  liq =968 ABF=290 ASF=771 0 200 400 600 800 1000 1200 Density (kg/m 3 ) 9

  10. IBL accumulator bverlaat@nikhef.nl estimate 9 liter 40 liter 54 cm 94 cm 110 cm 150 cm 24 cm 14.6 cm Marco 27 cm frame limit Marco accumulator IBL accumulator 10

  11. IBL needs a Lewa bverlaat@nikhef.nl membrane pump (instead of the Marco gear pump) 11

  12. Marco adjustments bverlaat@nikhef.nl Current 9ltr Marco Accumulator Foreseen 40 liter Lewa IBL Accumulator membrane pump 12

  13. bverlaat@nikhef.nl Atlas IBL plant space 1.9 m • New assigned IBL plant space has a limited height: ~1.9m (but sufficient floor space) • Using Marco => No chiller underneath • Possible require more space for lewa membrane pump swap – Not sure what impact is on Marco design 13

  14. Marco upgrade to IBbeLle bverlaat@nikhef.nl Is this what we need? VL128 VL129 VL128 VL129 PR119 PR119 PT119 PT119 PM129 LT119 PM129 vent evacuate PR118 LT119 vent evacuate PR118 PT118 PT118 ½” ⅜” TT118 CO2 ⅜” TT118 Accumulator AC119 18 ½” HX212 18 ⅜” AC119 HX212 HX119 CO 2 from experiment HX119 VL118 CO 2 from experiment ⅜” VL118 VL106 VL105 CO 2 to experiment PR106 VL106 VL105 CO 2 to experiment by-pass HT119.temp PR106 HT119.thsw 6 7 ⅜” 17 ⅜” by-pass HT119.temp HT119 HT119.thsw ⅜” 6 7 ¼” 17 HT119 fill TT105 5 ½” HT104 ⅜” fill TT105 5 ⅜” ⅜” FL123 HT104 HT104.temp ¼” FL123 VL123 ⅜” HT104.thsw HT104.temp VL123 HT104.thsw ¼” ⅜” ½” HX208 FT103 4 19 ¼” ¼” ⅜” HX208 PR104 VL103 HT102 FT103 4 19 PT104 TT104 PR104 VL103 VL103 HT102.temp CO2 PT104 FL103 HT102.thsw condenser HX101 TT104 ⅜” 3 ⅜” 2 ¼” HX101 PR103 VL104 PT103 ¼” TT101 PT103 PM101 FL103 VL101 VL122 TT101 VL12 PM102 2 3 PM101 1 1 CO2 pumps Marco IBbeLle? 14

  15. IBL, Marco, IBbeLle and bverlaat@nikhef.nl the future • We are intensifying the roadmap to the creation of the IBL CO 2 cooling system design and construction. – Are the IBL specs and Belle spec sufficiently similar for a common Marco (IBbeLle) approach? – Are our timelines similar? – If so how do we share the work and how do we organize each other? • Important items for a common IBbeLle approach: – Redundancy – Control framework – AO? • Serious attention is needed for both Belle and IBL on the following: – Vacuum insulation, this is the only option and needs more research to understand. – AO? 15

Recommend


More recommend