asymptotics beats monte carlo the case of correlated
play

Asymptotics beats Monte Carlo: The case of correlated local vol - PowerPoint PPT Presentation

Weierstrass Institute for Applied Analysis and Stochastics Asymptotics beats Monte Carlo: The case of correlated local vol baskets Christian Bayer and Peter Laurence WIAS Berlin and Universit di Roma Approximations for local vol baskets


  1. Weierstrass Institute for Applied Analysis and Stochastics Asymptotics beats Monte Carlo: The case of correlated local vol baskets Christian Bayer and Peter Laurence WIAS Berlin and Università di Roma Approximations for local vol baskets · November 29, 2014 · Page 1 (30) Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de

  2. Outline Introduction 1 2 Outline of our approach Heat kernel expansions 3 4 Numerical examples Approximations for local vol baskets · November 29, 2014 · Page 2 (30)

  3. Outline Introduction 1 2 Outline of our approach Heat kernel expansions 3 4 Numerical examples Approximations for local vol baskets · November 29, 2014 · Page 3 (30)

  4. Methods of European option pricing u ( t , S t ) = e − r ( T − t ) E � f ( S T ) | S t � Example (Example treated in this work) �� n � + , at least one weight positive ◮ f ( S ) = i = 1 w i S i − K ◮ n large (e.g., n = 500 for SPX) ◮ PDE methods ◮ (Quasi) Monte Carlo method ◮ Fourier transform based methods ◮ Approximation formulas Approximations for local vol baskets · November 29, 2014 · Page 4 (30)

  5. Methods of European option pricing u ( t , S t ) = e − r ( T − t ) E � f ( S T ) | S t � Example (Example treated in this work) �� n � + , at least one weight positive ◮ f ( S ) = i = 1 w i S i − K ◮ n large (e.g., n = 500 for SPX) ◮ PDE methods Pros: fast, general Cons: curse of dimensionality, path-dependence may or may not be easy to include ◮ (Quasi) Monte Carlo method ◮ Fourier transform based methods ◮ Approximation formulas Approximations for local vol baskets · November 29, 2014 · Page 4 (30)

  6. Methods of European option pricing u ( t , S t ) = e − r ( T − t ) E � f ( S T ) | S t � Example (Example treated in this work) �� n � + , at least one weight positive ◮ f ( S ) = i = 1 w i S i − K ◮ n large (e.g., n = 500 for SPX) ◮ PDE methods ◮ (Quasi) Monte Carlo method Pros: very general, easy to adapt, no curse of dimensionality Cons: slow, quasi MC may be difficult in high dimensions ◮ Fourier transform based methods ◮ Approximation formulas Approximations for local vol baskets · November 29, 2014 · Page 4 (30)

  7. Methods of European option pricing u ( t , S t ) = e − r ( T − t ) E � f ( S T ) | S t � Example (Example treated in this work) �� n � + , at least one weight positive ◮ f ( S ) = i = 1 w i S i − K ◮ n large (e.g., n = 500 for SPX) ◮ PDE methods ◮ (Quasi) Monte Carlo method ◮ Fourier transform based methods Pros: very fast to evaluate (“explicit formula”) Cons: only available for affine models, difficult to generalize, curse of dimensionality ◮ Approximation formulas Approximations for local vol baskets · November 29, 2014 · Page 4 (30)

  8. Methods of European option pricing u ( t , S t ) = e − r ( T − t ) E � f ( S T ) | S t � Example (Example treated in this work) �� n � + , at least one weight positive ◮ f ( S ) = i = 1 w i S i − K ◮ n large (e.g., n = 500 for SPX) ◮ PDE methods ◮ (Quasi) Monte Carlo method ◮ Fourier transform based methods ◮ Approximation formulas Pros: very fast evaluation Cons: derived on case by case basis, therefore very restrictive Approximations for local vol baskets · November 29, 2014 · Page 4 (30)

  9. Methods of European option pricing u ( t , S t ) = e − r ( T − t ) E � f ( S T ) | S t � Example (Example treated in this work) �� n � + , at least one weight positive ◮ f ( S ) = i = 1 w i S i − K ◮ n large (e.g., n = 500 for SPX) ◮ PDE methods ◮ (Quasi) Monte Carlo method ◮ Fourier transform based methods ◮ Approximation formulas ◮ Work horse methods: PDE methods and (in particular) (Q)MC ◮ Particular models allowing approximation formulas (e.g., SABR formula ) or FFT (Heston model) very popular Approximations for local vol baskets · November 29, 2014 · Page 4 (30)

  10. Outline Introduction 1 2 Outline of our approach Heat kernel expansions 3 4 Numerical examples Approximations for local vol baskets · November 29, 2014 · Page 5 (30)

  11. Setting ◮ Local volatility model for forward prices dF i ( t ) = σ i ( F i ( t )) dW i ( t ) , i = 1 , . . . , n , � � dW i ( t ) , dW j ( t ) = ρ i j dt �� n � + , at least ◮ Generalized spread option with payoff i = 1 w i F i − K one w i positive ◮ Goal: fast and accurate approximation formulas, even for high n ◮ n = 100 or n = 500 not uncommon (index options) Example ◮ Black-Scholes model: σ i ( F i ) = σ i F i ◮ CEV model: σ i ( F i ) = σ i F β i i Approximations for local vol baskets · November 29, 2014 · Page 6 (30)

  12. Setting ◮ Local volatility model for forward prices dF i ( t ) = σ i ( F i ( t )) dW i ( t ) , i = 1 , . . . , n , � � dW i ( t ) , dW j ( t ) = ρ i j dt �� n � + , at least ◮ Generalized spread option with payoff i = 1 w i F i − K one w i positive ◮ Goal: fast and accurate approximation formulas, even for high n ◮ n = 100 or n = 500 not uncommon (index options) Example ◮ Black-Scholes model: σ i ( F i ) = σ i F i ◮ CEV model: σ i ( F i ) = σ i F β i i Approximations for local vol baskets · November 29, 2014 · Page 6 (30)

  13. Setting ◮ Local volatility model for forward prices dF i ( t ) = σ i ( F i ( t )) dW i ( t ) , i = 1 , . . . , n , � � dW i ( t ) , dW j ( t ) = ρ i j dt �� n � + , at least ◮ Generalized spread option with payoff i = 1 w i F i − K one w i positive ◮ Goal: fast and accurate approximation formulas, even for high n ◮ n = 100 or n = 500 not uncommon (index options) Example ◮ Black-Scholes model: σ i ( F i ) = σ i F i ◮ CEV model: σ i ( F i ) = σ i F β i i Approximations for local vol baskets · November 29, 2014 · Page 6 (30)

  14. Basket Carr-Jarrow formula ◮ Consider the basket (index) � n i = 1 w i F i : n n � � d w i F i ( t ) = w i σ i ( F i ( t )) dW i ( t ) i = 1 i = 1 ◮ Ito’s formula formally implies that ◮ Let H n − 1 be the Hausdorff measure on E ( K ) Approximations for local vol baskets · November 29, 2014 · Page 7 (30)

  15. Basket Carr-Jarrow formula ◮ Consider the basket (index) � n i = 1 w i F i . ◮ Ito’s formula formally implies that   +   + n n � �          w i F i ( t ) − K  =  w i F i (0) − K  +             i = 1 i = 1 � T � T n 1 � w i F i ( u ) > K dF i ( u ) + 1 � δ � w i F i ( u ) = K σ 2 + w i N , B ( F ( u )) du 2 0 0 i = 1 ◮ Let H n − 1 be the Hausdorff measure on E ( K ) Approximations for local vol baskets · November 29, 2014 · Page 7 (30)

  16. Basket Carr-Jarrow formula ◮ Consider the basket (index) � n i = 1 w i F i . ◮ Ito’s formula formally implies with E ( K ) = { F | � w i F i = K } that   + � T n + 1 � � �     σ 2 C ( F (0) , K , T ) =  w i F i (0) − K  E N , B ( F ( u )) δ E ( K ) ( F ( u )) du       2 0 i = 1 ◮ Let H n − 1 be the Hausdorff measure on E ( K ) Approximations for local vol baskets · November 29, 2014 · Page 7 (30)

  17. Basket Carr-Jarrow formula ◮ Consider the basket (index) � n i = 1 w i F i . ◮ Ito’s formula formally implies with E ( K ) = { F | � w i F i = K } that   + n �     C ( F (0) , K , T ) =  w i F i (0) − K        i = 1 � T � + 1 R n σ 2 N , B ( F ) δ E ( K ) ( F ) p ( F 0 , F , u ) d F du 2 0 ◮ Let H n − 1 be the Hausdorff measure on E ( K ) Approximations for local vol baskets · November 29, 2014 · Page 7 (30)

  18. Basket Carr-Jarrow formula ◮ Consider the basket (index) � n i = 1 w i F i . ◮ Ito’s formula formally implies with E ( K ) = { F | � w i F i = K } and v ( F ) ≔ � i w i F i that   + n �     C ( F (0) , K , T ) =  w i F i (0) − K        i = 1 � T � 1 R n |∇ v ( F ) | σ 2 N , B ( F ) δ 0 ( v ( F ) − K ) p ( F 0 , F , u ) d F du + 2 | w | 0 ◮ Let H n − 1 be the Hausdorff measure on E ( K ) Approximations for local vol baskets · November 29, 2014 · Page 7 (30)

  19. Basket Carr-Jarrow formula ◮ Consider the basket (index) � n i = 1 w i F i . ◮ Ito’s formula formally implies with E ( K ) = { F | � w i F i = K } and v ( F ) ≔ � i w i F i that   + n �     C ( F (0) , K , T ) =  w i F i (0) − K        i = 1 � T � 1 R n |∇ v ( F ) | σ 2 + N , B ( F ) δ 0 ( v ( F ) − K ) p ( F 0 , F , u ) d F du 2 | w | 0 ◮ Let H n − 1 be the Hausdorff measure on E ( K ) . Recall the co-area formula: � ∞ � � |∇ v ( x ) | g ( x ) dx = g ( x ) H n − 1 ( dx ) ds v − 1 ( { s } ) −∞ Ω Approximations for local vol baskets · November 29, 2014 · Page 7 (30)

Recommend


More recommend