asymptotic safety in qft
play

(Asymptotic) Safety in QFT Francesco Sannino Plan Meaning of - PowerPoint PPT Presentation

(Asymptotic) Safety in QFT Francesco Sannino Plan Meaning of fundamental From complete freedom to complete safety Controllable asymp. safe theory in 4D a-theorem for asymptotic safety Asymptotically safe thermodynamics and


  1. (Asymptotic) Safety in QFT Francesco Sannino

  2. Plan • Meaning of fundamental • From complete freedom to complete safety • Controllable asymp. safe theory in 4D • a-theorem for asymptotic safety • Asymptotically safe thermodynamics and thermal d.o.f. count • QCD conformal window 2.0 (adding the asymp. safe window) • Nonperturbative results for N=1 supersymmetric safety

  3. The Standard Model works Fields: Gauge fields + fermions + scalars Interactions: Gauge: SU(3) x SU(2) x U(1) at EW scale Yukawa: Fermion masses/Flavour Culprit: Higgs Scalar self-interaction

  4. Gauge - Yukawa theories L = − 1 2 F 2 + iQ γ µ D µ Q + y ( Q L HQ R + h . c . ) Yukawa ⇤ 2 DH † DH (H † H) 2 ⇤ (H † H) ⇥ ⇤ ⇥ ⇥ Tr − λ u Tr − λ v Tr Gauge Scalar selfinteractions 4D: standard model, dark matter, … 3D: condensed matter, phase transitions 2D: graphene, … 4plusD: extra dimensions, string theory, … Universal description of physical phenomena

  5. Fundamental theory Wilson: A fundamental theory has an UV fixed point Irrelevant Short distance conformality Continuum limit well defined Complete UV fixed point t n Smaller critical surface dim. = more a v e l IR predictiveness e R Mass operators relevant only for IR The Standard Model is not a fundamental theory

  6. Asymptotic Freedom Confining/chiral symmetry breaking � Trivial UV fixed point Non-interacting in the UV UV logarithmic approach Energy � Perturbation theory in UV � IR conformal or dyn. scale IR conformality/continuous spectrum * � Energy � U

  7. Complete Asymptotic Freedom All marginal couplings vanish in the UV CAF conditions obtained at 1-loop Gauge coupling drives CAF IR conformal or dyn. scale generated µd α H dµ = α H [ c 2 α H + c 1 α g ] CAF c 1 < 0 c 2 > 0 Cheng, Eichten, Li, PRD 9, 2259 (1974) Pica, Ryttov, Sannino, 1605.04712 + Callaway, Phys. Rept. 167, 241 higher orders for IR conformality Holdom, Ren, Zhang, 1412.5540 Giudice, Isidori, Salvio, Strumia, 1412.2769

  8. Asymptotic Safety Wilson: A fundamental theory has an UV fixed point Trivial fixed point Interacting fixed point Non-interacting in the UV Integrating in the UV Logarithmic scale depend. Power law 0.4 0.4 Asymptotic safety Asymptotic freedom 0.3 0.3 α ( μ ) α ( μ ) 0.2 0.2 0.1 0.1 0.0 0.0 - 1.0 - 0.5 0.0 - 1.0 - 0.5 0.0 0.5 Log ( μ / μ 0 ) Log ( μ / μ 0 )

  9. Does a theory like this exist?

  10. Exact 4D Interacting UV Fixed Point Litim and Sannino, 1406.2337, JHEP Antipin, Gillioz, Mølgaard, Sannino 1303.1525 PRD L = − F 2 + iQ γ · DQ + y ( Q L HQ R + h . c . )+ ⇤ 2 ∂ H † ∂ H (H † H) 2 ⇤ (H † H) ⇥ ⇤ ⇥ ⇥ Tr − uTr − vTr

  11. Veneziano Limit Normalised couplings v α v u = α h N F N F At large N 2 < + N C

  12. Non-Asymptotically Free t = ln µ β g = ∂ t α g = − B α 2 g µ 0 B < 0 B > 0 0.4 0.4 Landau pole Asymptotic freedom 0.3 0.3 α ( μ ) α ( μ ) 0.2 0.2 0.1 0.1 0.0 0.0 - 1.0 - 0.5 0.0 0.0 0.5 1.0 Log ( μ / μ 0 ) Log ( μ / μ 0 )

  13. Small parameters B = − 4 ✏ = N F − 11 3 ✏ N C 2 B < 0 ✏ > 0 0  ✏ ⌧ 1 0.4 0.3 α g ( μ ) 0.2 Landau Pole ? 0.1 0.0 0.0 0.5 1.0 Log ( μ / μ 0 )

  14. Can NL help? B = − 4 β g = − B α 2 g + C α 3 3 ✏ g 0  α ∗ i ff C < 0 g ⌧ 1 β g g = B ϵ ↵ ∗ C ∝ ✏ α g Impossible in Gauge Theories with Fermions alone Caswell, PRL 1974

  15. Add Yukawa " # ◆ 2 ✓ ◆ ✓ 11 4 25 + 26 � g = ↵ 2 3 ✏ + 3 ✏ ↵ g − 2 2 + ✏ ↵ y g � y = ↵ y [(13 + 2 ✏ ) ↵ y − 6 ↵ g ]

  16. NLO - Fixed Points Gaussian fixed point ( α ∗ g , α ∗ y ) = (0 , 0) Interacting fixed point

  17. Scaling exponents: UV completion Irrelevant t n a v e l e R Relevant direction ϑ 1 < 0 Irrelevant direction ϑ 2 > 0 A true UV fixed point to this order Litim and Sannino, 1406.2337, JHEP

  18. NNLO - The scalars The scalar self-couplings Single trace Double trace Only single trace effect on Yukawa Double-trace coupling is a spectator

  19. Phase Diagram Irrelevant t n a v e l e R

  20. Separatrix = Line of Physics Globally defined line connecting two FPs x i r t a r a p e S

  21. Complete asymptotic safety Litim and Sannino, 1406.2337, JHEP Gauge + fermion + scalars theories can be fund. at any energy scale Scalars are needed to make the theory fundamental

  22. a-theorem L = L CF T + g i O i Quantum correct., marginal oper. g i = g i ( x ) Tool: Curved backgrounds γ µ ν → e 2 σ ( x ) γ µ ν Conformal transformation g i ( µ ) → g i ( e − σ ( x ) µ ) Z � d 4 x L R D Φ e i Variation of the generating functional W = log

  23. Weyl (anomaly) relations ✓ ◆ Z δ W δ W + ∂ µ σ w i ∂ ν g i G µ ν + . . . d 4 x σ ( x ) � aE ( γ ) + χ ij ∂ µ g i ∂ ν g j G µ ν � ∆ σ W ≡ 2 γ µ ν − β i = σ δγ µ ν δ g i E ( γ ) = R µ νρσ R µ νρσ − 4 R µ ν R µ ν + R 2 Euler density G µ ν = R µ ν − 1 Einstein tensor 2 γ µ ν R Beta functions β i χ ij , ω i Functions of couplings a, Weyl relations from abelian nature of Weyl anomaly ∆ σ ∆ τ W = ∆ τ ∆ σ W

  24. Perturbative a-theorem − χ ij + ∂ w i − ∂ w j ✓ ◆ ∂ ˜ a a ≡ a − w i β i β j = ˜ ∂ g i ∂ g j ∂ g i d a = − χ ij β i β j dµ ˜ a-tilde is RG monotonically decreasing if chi is positive definite Cardy 88, conjecture True in lowest order PT Osborn 89 & 91, Jack & Osborn 90 Analyticity: a-tilde bigger in UV Komargodski & Schwimmer 11, Komargodski 12

  25. Safe variation for the a-theorem function To leading order ∆ ˜ = 104 a 171 ✏ 2 � gg χ gg = N 2 C − 1 128 π 2 ˜ ˜ a IR a UV Positive and growing with epsilon Sannino, in preparation Antipin, Gillioz, Mølgaard, Sannino 13 Bootstrap and composite operators Antipin, Mølgaard, Sannino 14

  26. Asymptotically Safe Thermodynamics

  27. Pressure and Entropy to NNLO Rischke & Sannino 1505.07828, PRD Ideal gas NLO NNLO ✏ = 0 . 03 ✏ = 0 . 05 ✏ = 0 . 05 ✏ = 0 . 08 ✏ = 0 . 07 ✏ = 0 . 07

  28. Violation of the thermal d.o.f. count Thermal d.o.f. conjecture Appelquist, Cohen, Schmaltz, th/9901109 PRD Corrected SU(2) GB count in Sannino 0902.3494 PRD F is violated Rischke & Sannino 1505.07828, PRD F does not apply to asymptotic safety? But the a-theorem works

  29. QCD Conformal Window vs 2.0

  30. ‘If’ large Nf QCD is safe N f N Safe f Critical Asymp. Safe Nf must exist Unsafe region in Nf-Nc N AF f Continuous (Walking) transition? N IR f On Large Nf safety of QCD Pica and Sannino 1011.5917, PRD Litim and Sannino, 1406.2337, JHEP N c

  31. Supersymmetric (un)safety Intriligator and Sannino, 1508.07413, JHEP Martin and Wells, hep-ph/0011382, PRD Beyond perturbation theory

  32. Unitarity constraints Operators belong to unitary representations of the superconf. group Dimensions have different lower bounds Gauge invariant spin zero operators Chiral primary operators have dim. D and U(1) R charge R

  33. Central charges Positivity of coefficients related to the stress-energy trace anomaly ‘a(R)’ Conformal anomaly of SCFT = U(1) R ’t Hooft anomalies [proportional to the square of the dual of the Rieman Curvature] ‘c(R)’ [proportional to the square of the Weyl tensor] ‘b(R)’ [proportional to the square of the flavor symmetry field strength]

  34. a-theorem For any super CFT besides positivity we also have, following Cardy r i = dim. of matter rep. +(-) for asymptotic safety (freedom) Stronger constraint for asymp. safety, since at least one large R > 5/3

  35. Beta functions Gauge coupling beta function proportional to ABJ anomaly Beta function of the holomorphic W y coupling y

  36. SQCD with H AF is lost N f > 3 N c W = y Tr QH e Q No perturbative UV fixed point

  37. SQCD with H Assume a nonperturbative fixed point, however D ( H ) = 3 2 R ( H ) = 3 N c < 1 for N f > 3 N c N f Violates the unitarity bound D ( O ) ≥ 1 Potential loophole: H is free and decouples at the fixed point Check if SQCD without H has an UV fixed point

  38. SQCD Unitarity bound is not sufficient Can be ruled out via a-theorem a UV − safe − a IR − safe < 0 Non-abelian SQED with(out) H cannot be asymptotically safe Generalisation to several susy theories using a-maximisation*

  39. Key points Gauge + fermion + scalars theories can be fund. at any energy scale Precise results: independent on scheme choice Discovered UV complete Non-Abelian QED-like theories N = 1 Susy cousin-theories are unsafe Asymptotically safe thermodynamics and violation of F-theorem Conjectured conformal window for QCD vs 2.0 (asymp. safe side) Scalars needed for perturbative asymptotic safety

  40. Higgs as shoelace

  41. Outlook Extend to other (chiral) gauge theories/space-time dim [Ebensen, Ryttov, Sannino,1512.04402 PRD, Codello, Langaeble, Litim, Sannino, JHEP 1603.03462, Bond and Litim 1608.00519, Mølgaard and Sannino to appear] N=1 Susy GUTs safety [Bajc and Sannino, to appear] Wilson loops, critical exponents, MHV Similarities and differences w.r.t. N=4 Go beyond P .T. [Lattice, dualities, holography, truncations] New ways to unify flavour? Models of DM and/or Inflation Hope for asymptotic safe quantum gravity*? * Weinberg

  42. Backup slides

  43. Phenomenological Applications

Recommend


More recommend