astrophysical evidence for dark matter
play

Astrophysical evidence for dark matter Galaxies Universe Theory - PowerPoint PPT Presentation

Astrophysical evidence for dark matter Luis Urea Introduction Astrophysical evidence for dark matter Galaxies Universe Theory DPyC-SMF FRWL Gravity BBang CMB Luis Urea BBN DM Dark Matter Pie Instituto de Fsica Dark energy


  1. Astrophysical evidence for dark matter Luis Ureña Introduction Astrophysical evidence for dark matter Galaxies Universe Theory DPyC-SMF FRWL Gravity BBang CMB Luis Ureña BBN DM Dark Matter Pie Instituto de Física Dark energy Dark matter Universidad de Guanajuato Strange models and Summary Instituto Avanzado de Cosmología (IAC) collaboration Bibliography 21 Jun 2007 / Reunión Anual de la DPyC

  2. Astrophysical Outline evidence for dark matter 1 Introduction Luis Ureña What are galaxies made of? Introduction What is the universe made of? Galaxies Universe Theory FRWL Gravity BBang CMB BBN DM Dark Matter Pie Dark energy Dark matter Strange models Summary Bibliography

  3. Astrophysical Outline evidence for dark matter 1 Introduction Luis Ureña What are galaxies made of? Introduction What is the universe made of? Galaxies Universe Theory 2 Theoretical Cosmology FRWL Gravity Homogeneity and Isotropy BBang Cosmological dynamics CMB BBN DM Dark Matter Pie Dark energy Dark matter Strange models Summary Bibliography

  4. Astrophysical Outline evidence for dark matter 1 Introduction Luis Ureña What are galaxies made of? Introduction What is the universe made of? Galaxies Universe Theory 2 Theoretical Cosmology FRWL Gravity Homogeneity and Isotropy BBang Cosmological dynamics CMB BBN DM 3 Big Bang Physics Dark Matter Pie CMB anisotropies Dark energy Dark matter Strange models Nucleosynthesis Summary Bibliography

  5. Astrophysical Outline evidence for dark matter 1 Introduction Luis Ureña What are galaxies made of? Introduction What is the universe made of? Galaxies Universe Theory 2 Theoretical Cosmology FRWL Gravity Homogeneity and Isotropy BBang Cosmological dynamics CMB BBN DM 3 Big Bang Physics Dark Matter Pie CMB anisotropies Dark energy Dark matter Strange models Nucleosynthesis Summary Bibliography 4 Dark Matters Brief summary of matter contents Dark energy Cold dark matter Candidates

  6. Astrophysical Outline evidence for dark matter 1 Introduction Luis Ureña What are galaxies made of? Introduction What is the universe made of? Galaxies Universe Theory 2 Theoretical Cosmology FRWL Gravity Homogeneity and Isotropy BBang Cosmological dynamics CMB BBN DM 3 Big Bang Physics Dark Matter Pie CMB anisotropies Dark energy Dark matter Strange models Nucleosynthesis Summary Bibliography 4 Dark Matters Brief summary of matter contents Dark energy Cold dark matter Candidates

  7. Astrophysical Typical galaxies evidence for dark matter Luis Ureña Introduction Galaxies Universe Theory FRWL Gravity BBang CMB BBN DM Dark Matter Pie Dark energy Dark matter Strange models Summary Bibliography

  8. Astrophysical Outline evidence for dark matter 1 Introduction Luis Ureña What are galaxies made of? Introduction What is the universe made of? Galaxies Universe Theory 2 Theoretical Cosmology FRWL Gravity Homogeneity and Isotropy BBang Cosmological dynamics CMB BBN DM 3 Big Bang Physics Dark Matter Pie CMB anisotropies Dark energy Dark matter Strange models Nucleosynthesis Summary Bibliography 4 Dark Matters Brief summary of matter contents Dark energy Cold dark matter Candidates

  9. Astrophysical Clusters of galaxies evidence for dark matter Luis Ureña Introduction Galaxies Universe Theory FRWL Gravity BBang CMB BBN DM Dark Matter Pie Dark energy Dark matter Strange models Summary Bibliography

  10. Astrophysical The whole observable universe evidence for dark matter Luis Ureña Introduction Galaxies Universe Theory FRWL Gravity BBang CMB BBN DM Dark Matter Pie Dark energy Dark matter Strange models Summary Bibliography

  11. Astrophysical CMB anisotropies evidence for dark matter Luis Ureña Introduction Galaxies Universe Theory FRWL Gravity BBang CMB BBN DM Dark Matter Pie Dark energy Dark matter Strange models Summary Bibliography

  12. Astrophysical Supernovae type Ia evidence for Knop (2003) et. al. dark matter R−band I−band F814W Luis Ureña 1997ek normalized flux 0.8 z=0.86 0.8 0.4 0.4 Introduction Galaxies 0 0 Universe −250 −40 0 40 80 120 150 550 −250 −40 0 40 80 120 150 550 Theory F675W normalized flux 1997eq 0.8 z=0.54 0.8 FRWL Gravity 0.4 0.4 BBang 0 0 CMB −250 −40 0 40 80 120 150 550 −250 −40 0 40 80 120 150 550 BBN F814W normalized flux 1997ez DM 0.8 z=0.78 0.8 Dark Matter Pie 0.4 0.4 Dark energy Dark matter 0 0 Strange models −250 −40 0 40 80 120 150 550 −250 −40 0 40 80 120 150 550 F675W Summary normalized flux 1998as z=0.35 0.8 0.8 Bibliography 0.4 0.4 0 0 −250 −40 0 40 80 120 150 350 −250 −40 0 40 80 120 150 550 F675W normalized flux 1998aw z=0.44 0.8 0.8 0.4 0.4 0 0 −450 −40 0 40 80 120 150 550 −450 −40 0 40 80 120 150 550 Observed day from peak Observed day from peak

  13. Astrophysical Outline evidence for dark matter 1 Introduction Luis Ureña What are galaxies made of? Introduction What is the universe made of? Galaxies Universe Theory 2 Theoretical Cosmology FRWL Gravity Homogeneity and Isotropy BBang Cosmological dynamics CMB BBN DM 3 Big Bang Physics Dark Matter Pie CMB anisotropies Dark energy Dark matter Strange models Nucleosynthesis Summary Bibliography 4 Dark Matters Brief summary of matter contents Dark energy Cold dark matter Candidates

  14. Astrophysical evidence for dark matter Luis Ureña Homogeneity and Isotropy (I) Introduction • The universe is spatially homogeneous and isotropic Galaxies Universe • We are not priviledged observers (Copernican principle) Theory • The universe is isotropic around us (CMB) FRWL Gravity • Friedmann-Robertson-Walker-Lemaître (FRWL) metric BBang CMB BBN sin 2 ψ k      = DM  d Ω 2 ds 2 = − dt 2 + a 2 ( t )  d ψ 2 +  k ψ 2 Dark Matter Pie =   Dark energy sinh 2 ψ k Dark matter =  Strange models Summary • Scale factor: a ( t ) ; Hubble parameter: H ( t ) = ˙ a / a Bibliography • (cosmological) Redshift: a ( z ) = 1 / ( 1 + z )

  15. Astrophysical evidence for dark matter Luis Ureña Introduction Galaxies Homogeneity and Isotropy (II) Universe • Homogeneity: extrapolation from local measurements Theory FRWL Gravity • Isotropy around any point leads to homogeneity BBang CMB BBN DM Dark Matter Pie Dark energy Dark matter Strange models Summary Bibliography

  16. Astrophysical evidence for dark matter Luis Ureña Introduction Galaxies Homogeneity and Isotropy (II) Universe • Homogeneity: extrapolation from local measurements Theory FRWL Gravity • Isotropy around any point leads to homogeneity BBang • Sunyaev-Zeldovich effect: CMB scattering by hot gas in CMB BBN clusters of galaxies DM Dark Matter Pie • Expansion of the universe? Dark energy Dark matter • Dilation factor from SN Ia: ( 1 + z ) 1 . 07 ± 0 . 06 Strange models • CMB Temperature: T ( z ) = 2 . 73 ( 1 + z ) K Summary Bibliography

  17. Astrophysical Outline evidence for dark matter 1 Introduction Luis Ureña What are galaxies made of? Introduction What is the universe made of? Galaxies Universe Theory 2 Theoretical Cosmology FRWL Gravity Homogeneity and Isotropy BBang Cosmological dynamics CMB BBN DM 3 Big Bang Physics Dark Matter Pie CMB anisotropies Dark energy Dark matter Strange models Nucleosynthesis Summary Bibliography 4 Dark Matters Brief summary of matter contents Dark energy Cold dark matter Candidates

  18. Astrophysical evidence for dark matter Luis Ureña General Relativity Theory Introduction • Energy-momentum tensor: T µ ν = diag ( − ρ, p , p , p ) Galaxies Universe • Energy density: ρ Theory • Isotropic pressure: p FRWL • Equation of state (EOS): p = ωρ Gravity • Conservation equation: T µν ; ν = 0 BBang CMB BBN ρ + 3 H ( ρ + p ) = 0 , ρ = ρ 0 a − 3 ( 1 + ω ) ˙ DM Dark Matter Pie Dark energy Dark matter Strange models Summary Bibliography

  19. Astrophysical evidence for dark matter Luis Ureña General Relativity Theory Introduction • Energy-momentum tensor: T µ ν = diag ( − ρ, p , p , p ) Galaxies Universe • Energy density: ρ Theory • Isotropic pressure: p FRWL • Equation of state (EOS): p = ωρ Gravity • Conservation equation: T µν ; ν = 0 BBang CMB BBN ρ + 3 H ( ρ + p ) = 0 , ρ = ρ 0 a − 3 ( 1 + ω ) ˙ DM Dark Matter Pie Dark energy • Main matter components Dark matter Strange models • Relativistic: ω = 1 / 3 Summary • non-Relativistic: ω = 0 Bibliography • Cosmological constant: ω = − 1 • Dark energy: ω < − 2 / 3

  20. General Relativity Theory Astrophysical evidence for • Einstein’s equations: R µν − ( 1 / 2 ) g µν R = 8 π G T µν dark matter • Friedmann equation Luis Ureña H 2 = 8 π G ρ i − k Introduction � Galaxies a 2 3 Universe i Theory • Acceleration equation FRWL Gravity a = − 4 π G a BBang ¨ ( ρ i + 3 p i ) � CMB 3 BBN i DM Dark Matter Pie Dark energy Dark matter Strange models Summary Bibliography

Recommend


More recommend