artificial cilia for microfluidics exploring the use of a
play

Artificial cilia for microfluidics exploring the use of a - PowerPoint PPT Presentation

Artificial cilia for microfluidics exploring the use of a horizontally micro-structured ferromagnetic PDMS composite graduation talk of Willem van Engen Eindhoven University of Technology Department of applied physics Molecular biosensors


  1. Artificial cilia for microfluidics exploring the use of a horizontally micro-structured ferromagnetic PDMS composite graduation talk of Willem van Engen Eindhoven University of Technology Department of applied physics Molecular biosensors for medical diagnostics 19-08-2008

  2. Microfluidics an Europa Valve plant site http://www-news.uchicago.edu/

  3. Microfluidic chip Lee et al. in Science (2005) doi:10.1126/science.1118919

  4. Microfluidic mixing R e = v s L   2300  turbulence Macroscopic: v s = R e ≈ 2.3 mm / s L Microscopic: Green in Int. Jnl. of Multiphysics (2007) doi:10.1260/175095407780130544 v s = R e ≈ 23 m / s so only mixing by diffusion L slow

  5. Cilia in nature 5 μ m Dartmouth Electron Microscope Facility Mammalian lung SEM Nikon MicrosopyU digital video gallery, Paramecium (protozoan) Khatavkar et al. in Phys. Fluids (2007) doi:10.1063/1.2762206

  6. Artificial cilia for microfluidics Goal → use artificial cilia to achieve pumping & mixing in microfluidics

  7. Artificial cilia for microfluidics Goal → use artificial cilia to achieve pumping & mixing in microfluidics How? ● high aspect-ratio ● polymer material ● magnetic actuation

  8. Magnetic artificial cilia ● Actuation by magnetic field Huber in Small (2005) doi:10.1002/smll.200500006 ● Magnetic iron-polymer composite small particles (ø<20nm) large particles (ø>20nm) superparamagnetic ferromagnetic induced permanent moment moment

  9. Magnetic actuation forces gradient force torque and ×   ⋅∇  = 0  F i = 0   H 0 H 0 F p = 0   ×  L  H 0 × e ∥ 3 F = 4 L µ 3 E T W (for small deflection)

  10. Induced versus permanent superparamagnetic material, ferromagnetic material, induced magnetic moment permanent magnetic moment M =   M =   H 0 M r F i ∝   H 0 ⋅∇   ∝  M ×  H 0 ,  ≈ 0 F i = 0,  H 0  p W = 4  0 M H 0  i 2 W = 0  j 3 3 r 4 ⋅ L 2 ⋅ L 2 R 3 3 E  E W W  ⋅∇   F i = 0  H 0 ×   = 0  H 0

  11. Induced versus permanent superparamagnetic material, ferromagnetic material, induced magnetic moment permanent magnetic moment M =   M =   H 0 M r F i ∝   H 0 ⋅∇   ∝  M ×  H 0 ,  ≈ 0 F i = 0,  H 0 W = 4  0 M H 0  p  i 2 W = 0  j 3 3 r 4 ⋅ L 2 ⋅ L 2 R 3 3 E  E W W scale-dependent scale-invariant

  12. Validity  p W = 4  0 M H 0  i 2 W = 0  j 3 3 r 4 ⋅ L 2 ⋅ L 2 R 3 3 E  E W W W=10 μ m, L=120 μ m E=0.5MPa,  =0.8, M=25mT

  13. Large artificial cilium – fabrication Sylgard-184 Polymer polydimethylsiloxane agent base + cast cure (liquid) (solid silicone resin)

  14. Large artificial cilium – fabrication Polymer polydimethylsiloxane (PDMS) ... made permanently magnetic by doping with ferromagnetic particles, 70nm Fe@C clusters 25 μ m 25 μ m

  15. Large artificial cilium – fabrication Polymer polydimethylsiloxane (PDMS) ... made permanently magnetic by doping with ferromagnetic particles, 70nm Fe@C Cut out a rectangular slab

  16. Large artificial cilium – response 3 M H 0  p W = 4  0 L 3 E W composite measurements: M r =96 kA/m M=11 kA/m W= 66 μ m, 2.2 vol% Fe@C

  17. Micro-fabrication W ∝  W  3  L High aspect-ratio for high deflection Horizontal fabrication by sacrificial layer lift-off technique

  18. Micro-fabrication – procedure Horizontal fabrication by sacrificial layer lift-off technique

  19. Micro-fabrication – procedure

  20. Micro-fabrication – result μ m 500 μ m 500 PDMS PDMS composite composite glass substrate glass substrate once sacrificial layer once sacrificial layer

  21. Micro-fabrication – result SEM optical W~10 μ m L ≈ 250 μ m T ≈ 150 μ m

  22. Micro-fabrication – result ≈ 183 μ m M~183kA/m

  23. Micro-fabrication – long cilia

  24. Conclusion ● Permanently magnetic artificial cilia bend in a perpendicular magnetic field scaling independent − p 3 aspect-ratio dependence − perform better than cilia with induced moment − ● Experiment confirms order-of-magnitude theory ● Micro-fabrication of artificial cilia was shown

  25. Outlook ● Details of fabrication procedure image courtesy of Francis Fahrni parameters − ● Multiple cilia in a microfluidic channel mask design − 500 μ m ● Actuation for mixing and pumping

  26. thank you for your attention

Recommend


More recommend