Application of molecular techniques in Virology Suzan D Pas – medical molecular microbiologist 1 Viroscience lab, Erasmus MC, Rotterdam, the Netherlands
Molecular techniques in virus diagnostics Qualitative and quantitative (RT-)PCRs Qualitative positive/negative answers for clinical decisions RSV for quarantine Respiratory viral pathogens for stopping antibiotics Etc.. Quantitative assays Associations with progression to disease Follow-up antiviral treatment Determine genotypic traits that influence clinical decision making Antiviral resistance after therapy failure in HIV/HBV/CMV/HSV Determine sub-/genotype that may negatively influence response to therapy (HBV/HCV/HPV)
Course of Hepatitis E virus infection in AlloHSCT recipient HEV RNA ALT Versluis et al, Blood2013
Benefits of molecular diagnostics in clinical virology It saves patient lives It saves nursery costs Compared to virus culture Faster Less hands on time (cheaper) More informative (quantitative) In general robust (not depending on quality of difficult to control materials like living cells)
Molecular diagnostic workflow @ Erasmus MC 1. CE/IVD automated docked CAP/CTM high throughput, high QC CatA blood borne viruses : HIV, HBV and HCV qPCR 2. Semi-automated workflow high throughput, high QC herpes panel (+JC, BK parvo) gastro-enteritis panel, respiratory virus panel 3. Cito / semi manual line low-medium throughput flexibel, manual pipetting exotic viral diseases 4. Point of impact assays
Point of impact vs point of care tests Point of care X laboratory Point of impact For virology: - resp: FLuA/FluB/RSV - HIV at anonymous testing site
POC / POI Molecular diagnostics Aries - Luminex Cepheid geneXprt Genmark Dx Filmarray - Alere i Biomerieux Limitations: Simplexa - sensitivity Focus - Less variety of tests diagnostics - Expensive!
Number of targets with in-house real-time (RT-)PCR 1995 2000 2005 2015 2010 Herpes viruses Respiratory viruses resistance markers HSV-1/2 Influenza A/B; Influenza EBV; RSV A/B; HMPV; (275/pan275/119/ HIV-2; CMV; PIV1-4; Rhino; 292/152/198/294) HBV; VZV; HCoV-OC43; -229E; HGV; HHV-6/-7/-8; -NL63; -HKU; -SARS Phocine Distemper Virus 2010 HEV JCV/BKV; Boca; Adeno; MPn Herpes B; 2012 HCoV- Phocine Herpes virus MERS 2014 2002 Sapovirus 2005 Enterovirus/ Astrovirus Norovirus Parecho Rotavirus GI&GII In total >90 targets Zika virus Other targets: Mumps; Measles; Rubella; Dengue; YFV; HDV; Hantaviruses; JEV; Lassa; Ebola; Marburg; WNV; Rabies; LCMV; CHV; Pox
Production MDx workgroup Viroscience 7000 CMV EBV 6000 Entero HBV HCV 5000 Flu A HIV 4000 # (RT-)PCR 3000 2000 1000 0 1996 1998 2000 2002 2004 2006 2008 2010 2012 Year
Automated molecular diagnostic work-flow Secondairy Purification Amplification PCR Report Sample RNA/DNA Detection Setup handling Middleware software LIMS
Issues to consider in quantification Sampling: distribution (in space and time) of the virus of interest Respiratory viruses, Varicella Zoster in blisters Quality control Efficiency of nucleic acid extraction and sample type Plasma versus urine, CSF, Faeces etc. Chemistry of downstream detection Variation in the primers/probe region targeted Mismatch tolerance of the enzyme platform
Issues to consider in quantification Sampling: distribution (in space and time) of the virus of interest Respiratory viruses, Varicella Zoster in blisters Quality control Efficiency of nucleic acid extraction and sample type Plasma versus urine, CSF, Faeces etc. Chemistry of downstream detection Variation in the primers/probe region targeted Mismatch tolerance of the enzyme platform
Internal/External controls QC plots (Levey-Jennings charts – Westgard rules) More info: https://www.westgard.com/lesson12.htm
QC parameters of molecular diagnostic assays 1 robustness 2 accuracy 3 Specificity precision – repeatability 4A 4A precision - intermediate precision 5 linearity / efficiency 6 linear range 7 Lower limit of detection (LLOD) 8 Lower limit of quantification (LLOQ) 9 selectivity 10 stability 11 carry-over According to ISO15189:2012 guidelines
Issues to consider in quantification Sampling: distribution (in space and time) of the virus of interest Respiratory viruses, Varicella Zoster in blisters Quality control Efficiency of nucleic acid extraction and sample type Plasma versus urine, CSF, Faeces etc. Chemistry of downstream detection Variation in the primers/probe region targeted Mismatch tolerance of the enzyme platform
Efficiency of nucleic acid extraction Universal Internal Viral Control Phocine Herpes Virus 1 (PhHV) Herpesvirus DNA control Phocine Distemper Virus (PDV) Morbillivirus RNA control Sample + known concentration of internal control
Comparison different clinical samples Ct values internal control PhHV-1 MagnaPure LC 38 38 38 36 36 36 * * 34 34 34 Ct values on ABI7700 Ct values on ABI7700 Ct values on ABI7700 * * 32 32 32 30 30 30 28 28 28 26 26 26 24 24 24 Plasma Plasma Plasma Serum Serum Serum CSF CSF CSF Faeces Faeces Faeces Urine Urine Urine Swabs Swabs Swabs
Issues to consider in quantification Sampling: distribution (in space and time) of the virus of interest Respiratory viruses, Varicella Zoster in blisters Quality control Efficiency of nucleic acid extraction and sample type Plasma versus urine, CSF, Faeces etc. Chemistry of downstream detection Variation in the primers/probe region targeted Mismatch tolerance of the enzyme platform
Variation in the primers/probe region targeted - CMV UL54 Van Doornum et al. JCM 2003
Dual target real time PCR Genome CMV 5’ - - 3’ UL54 UL75 If there is a mutation in either of the primer/probe sites the other PCR will ‘take over‘
Case I – no mutations in UL54 primer/probe site 6,00 log (c/ml) 5,50 5,00 LOD UL54 (c/ml) log viral load (IU/ml) log(IU/ml) log Viral load (c/ml) 4,50 LOD UL54+UL75 (IU/ml) 4,00 3,50 3,00 2,50 2,00 1,50 1,00 0,00 0,50 08-09-2012 13-09-2012 18-09-2012 23-09-2012 28-09-2012 03-10-2012 08-10-2012 13-10-2012 18-10-2012 23-10-2012 28-10-2012
Case II – Merlin strain 6,00 log (c/ml) 5,50 LOD UL54 (c/ml) 5,00 log(IU/ml) log viral load (IU/ml) 4,50 log Viral load (c/ml) LOD UL54+UL75 (IU/ml) 4,00 3,50 3,00 2,50 2,00 1,50 1,00 0,00 0,50 26-02-2011 06-06-2011 14-09-2011 23-12-2011 01-04-2012 10-07-2012 18-10-2012
Influence of mastermix composition on primer bindingsite mismatch tolerance Stadhouders et al., Journal of Mol. Diag. 2010
Single primer-template mismatch behavior FVMM (Taq) rev-primer GOLD (Taq) HawkZo5 (rTth) EZ (rTth) 14 12 10 Increase in Ct-value 8 6 4 2 0 C-T C-C G-G A-C A-G A-C A-G A-C A-G T-T T-C T-G A-C A-G G-G C-A G-A G-T A-A A-A A-A A-A G-A G-T NT1 NT2 NT3 NT5 rTth based RT-PCR: low mismatch tolerance FVMM (MMLV-Taq based) : high mismatch tolerence
Single primer-template mismatch behavior FVMM (Taq) fwd-primer GOLD (Taq) HawkZo5 (rTth) EZ (rTth) 14 12 10 8 increase in Ct value 6 4 2 0 T-T T-G T-C A-C A-G A-A T-T T-G T-C G-T G-G G-A G-T G-A G-G T-T T-G T-C C-T C-A C-C C-T C-C C-A NT1 NT2 NT3 NT5 Forward primer: high tolerance for Hawk Zo5 high tolerance for FVMM, except for A-A and A-G mismatch at 1 st nucleotide !!
Alignment EMC HeV primers-probe – 5’UTR probe forward reverse A-A mismatch!! FVMM Rev primer Hawk Zo5 discrimination (rTth) discrimination
Use of mismatch tolerance in assay design HRV-strains (N=87) HeV-strains (N=54) assay EZ (old) HawkZo5 FVMM 2-step Gold (old) HawkZo5 FVMM Old EMC 75 nd 83 nd nd 2 HRV set New EMC HRV nd 87 87 nd 2 1** HRV-set 4 Published nd 87 87 nd 46 47 HRV set¹ old EMC 6 nd 86 54 nd 54 HeV set² New EMC HeV nd 0 2* nd 54 54 HeV set 4 Published nd 0 42 nd 54 54 HeV set 3 * HRV-8 and HRV-9 had a Ct-delay respectively 10 and 17 cycles, fluorescence <0.2 ** HeV-echo7 had a Ct-delay > 20 cycles, fluorescence <0.35 ¹ Lu et al., J.clin. Microbiol. 2008 46:533-539 2 Doornum et al., J. Med. Virology 2007 79:1868-1876 3 Nijhuis et al., J. clin. Microbiol. 2002 40:3666-3670 4 Voermans et al, in preparation
GENOTYPING / DRUG RESISTANCE ANALYSIS
Sanger sequencing: genotyping to predict response Response by Genotype HBeAg loss end of follow-up 47% 47% 50 50 44% 44% % % 40 40 28% 28% 30 30 25% 25% 20 20 10 10 0 0 B C D A A B C D n=90 n=23 n=23 n=39 n=39 n=103 n=103 n=90 Flink et al, Am J Gastroenterol. 2006 Feb;101(2):297-303
Variant detection techniques in virology for drug resistance screening Start antiviral therapy Course of infection HBV Replication Time Fung, Antivir Ther 2004; Locarnini, Antivir Ther 2004
Genotyping / drug resistance detection Sanger sequencing OR population sequencing C T A T A T G G A T G A T G T G G Detection limit: down to 25% of mutant in a population Complete sequence information No detection of double infections Pas et al. JCV2002
Recommend
More recommend