analytic
play

Analytic Of Khavinson D . Seattle August , 2019 I - - - PDF document

Variations ( Eternal ) the Theme on Continuation Analytic Of Khavinson D . Seattle August , 2019 I - - " Between real two the truths of and domain easiest the , quite often shortest path through the complex


  1. Variations ( Eternal ) the Theme on Continuation Analytic Of Khavinson D . Seattle August , 2019

  2. I - - " Between real two the truths of and domain easiest the , quite often shortest path through the complex passes " domain . PAINLEVE P 1900 . ,

  3. 2 - - I A up warm - . . ⇐ anzn When does the 43¥ series . ? function represent rational a FN Iff N -V A.= : no , outta .÷÷÷÷÷÷)=o = I . Fz " =/ Ex Z N , . 1881 ) ( Kronecker . , I " Cii ) wlroc Anz extends to =/ I } iff - g El { cry an entire is - g , , - 1899 of the . ( L Lean minimal type . , . ) Wigert S 1900 A Faber 1903 - . Ecoscrjzn.TL - , . . hmm × Ex

  4. 3 - - HTS iii ) . , ( s ' % s f HIE ginn " . ÷÷÷÷÷÷ : . log J cot 6 r > ' ) 97 ( D K - " minimal type ( for Held also " of g s Sy . ) in LET IIEimdeessg.sk ? hmmm " " Yes likely ? ? ? A Most .

  5. 4 - - ODE PDE " ' ! I More serious rs . . " I ' " ' Cz ) Li ) ) Golz WH )=fH w w an t t . . . , ' " c ⇒ " wco ) C D= w we = Wn ( Cauchy 's Problem i ) . . . - , , thrum " ; } ! If { analytic in r a are , ( * ) SL all extend O solutions of E , to r ( ii ) txamplemMIE-z.EE . C** ) D. , = f ( Z CZ , ,o ) entire w - Where , ) Gz f we = , , hTwhyIsiTesT develop might singularity on - lieonthesameraeiet.us? I } { T 2- = 2- : 72 = L , a r my do from ? they come Z .

  6. 5 - - why potentialtheory.me III. 1914 ) ( i ) ( G Herglotz . , . IR ? T A solid algebraic in Or = - - - new ::÷k÷f.÷ . ) potential (a) How be far continued can un harmonically ) ? C into r What kind (b) singularities of does ? inside it encounter = { 13 Ee T 1×1 : a . ¥ , Arising use . ( ) thru value mean . Surprise 1123403 La ) : for ANY entire pdfssi.atd.pt?fzYJaemms.Iaegdefl ? when Algebraic Lb .

  7. 6 - - " " Ground ( High H . Shapiro OK S ' 8g - . , ::¥÷ : : On - y I Ix T n mum Cauchy 's Problem DM T : =p near outs u = Lump inside desired the is - Us M continuation . Question ,p .LI/n--oMtn--oH.J The H G : . 2- Are singularities of solutions the ( Cp ) C * ) dictated by the of %%%a::t÷÷q;m-m) Variety initial T and DO the

  8. 7 - - 2- T.leraybclocal.IT#ryt5os-6s Exam E ( Z modified Schwarz W M U potential - = : - o ) " bad " Caution point ( is o : a , - Keralerskaya ) characteristic ( Cauchy "i÷÷:%±⇒¥ , fails ) Than ples:C)T-{w=Z32#mmmg . . "3 ZI few U + = 0 } is ramified { around w a - - , zw ) wrt plane characteristic ( TANGENT T at ( o ) to o , . principle 's Kray ; #n=u#EnE#eEt:e :* :p :# : from C locally ) T tic vis

  9. 8 - - { IF ziff Recall (2) -_ ,0)=fCz we , ) entire w=fG÷z ) - , is -z= set sing the . . " " Leroy {22--0} tangent at to 0 . - -5={77--1} I I IF Ellipses (3) .IE/lipsoids/Spkeres (a) , § ET EL Is µ # ← tf III. x. aeg A * + has 4 char points . , ' R2 Leroy 's I I - ; ! 1 char tangent . All log potentials , entire densities with , a { facing extend IRZ to

  10. g - - Generally Leroy 's Principle speaking - is globed But local dim is in 2 for - . L lower O Thanks D. =D terms ' t . . . Riemann 's to integrating of method hyperbolic 2 in eggs var - . dim In it only 73 Known is - , to be for global : - spheres spherical cylinders ( Dk - H ? - . , 90 ) Shaping Johnsson ? 89 ' G - . , . ALL Surfaces Quadratic ( G - - Toh £ - When should E expect we bocinded nsson.194-%57.mg .es#eespaere.-- , algebraic singularities ? -whetisfhereasonbehindm] " polar " unbounded singularities , , -

  11. 10 - - : =LIItIItII=l (b) Oblate spheroid T : > by ^ a " µy - : =L xs-qxftxEE.bg E the each caustic - , point meeting the is to F point of 2 tangent char Cl lines - . - { IIe fEtII= I } Prelate spheroid ti - I p xEXjo ) EVER { I ix. f , point each the on - meeting point of E caustic the 2 is characteristics tangent at . 9nnjegetemr.ee?Thisbehariounistrnehg -Tzuq(sortof),in20.T

  12. It - - €fingularitiesofSelutionstoBVP7 me Problem 's Dirichlet , . T⇒r algebraic - " " f Date entice , poleyn - . Du in - and ins { o A = real is ⇒ U u=f . , . on ⇐ where singularities do Li ) of u ? outside SL might occur . How relate Cci ) do singularities - occur ? ? to the geometry P of " the " worst Is there data - LnTALL for responsible possible singularities might that

  13. I 2- - Few facts : . ) , G. Lames Classical M Heine Ferrers ( E - . . . , , r :={x : 72×56 ; o } Priephg al > an a , , > , . . A ) in Du o r - { - Sr f pot deg N of u= . , polynomial " harmonic is Then U a , of degree N E . ' 92 ) The For H . Shapiro . S ( entire Oke any . , f the * ) data solution L of entire is a , . ) ' Armitage ( D refinement 04 - . . , ConjeetuuLhK-HSs)T Ellipsoids are which for domains holds THM the the only . ' d 5) ( Render TRUE H . . provided P=LPcx)=o . . , P polynomial Pmt D= Po - t . . . - ' , homogeneous " IR Pm in 7,0 ( i. elliptic e. ) . ,

  14. 13 - - Discussing - { C x. y ) T n 2 - - - , :xIyZltePn¥D=§ - ? ?7 n , " " quintic . a C E. Lundberg I ) true Ad for cuties hoc Render H . odd ? ? ? deg T " 75 intuition " , -2N " { " DP Data sits 2 T pieces of so on , becomes overdetermined due C to . ' aimi:F¥:::%:;c÷nT = { x' " + y 'Ll } " ' 's T : TV P Eben felt ⇐ screen . 92 ) ( ! singularities 0 many - × ( ) data for the xx x - . . xx A - XI . . f y = L s - EL ( DK 10 ) nearest ' the × , x 2314 f- 0,0 ) ( are n nom x

  15. 13 - - FindingSingularitiesT E. Lundberg . 5. Shapiro ( S Eben DK P felt , H Bell . . , , , ' to 105 - , " ( A. Kolmogorov " Lightning Bolts Arnold V. , !3th m ) ' 50 Pro # Hilbert 's s , . I :# X X closed LB a . ' C ! ) The size LB E in of close how to the origin the ~ singularity appears . Dim 3D virtually nothing HIGHER - . , except for imprecise rather is known estimates for elliptic Render of Surfaces .

  16. 14 - - Applicationsto.i.ir/-hogonalpelynomialsy try OP :L pfita.io 1122 B r -8mm ① , " . 2eeurre.nu , ( Pn OP - n ) Of deg LET my , put it an Zpn= an ,nPn - An + - Neff " - - Nti - : { ⇒ r 2K ' su o - m - u tf Pol deg . of n pot of deg u K = Ent . - N The ( M Putin . Stagliano polo ' 07 us ar , . N ) K polo Styli ' D us lo and - . , Either condition ⇒ N =3 e = , are Chebyshev ellipse Lpn } . , SOME Existence with domain no of hemp ert ' L 78 recurrence - . . ,

  17. -=y C- I Eigenfunctions OTHER BVP - . :÷÷ " II T of a ? where Q singularities are . Essentially nothing known is - . ellipsoid ALL eigenfunctions A = - , type ) exponential entire ( of are - unpublished ) Render to K C H SS H - . , proofs ) Iad ' ' well ( unpublished ) C with known - , ? Conjecture ? If ALL eigenfunctions entire ellipsoid d i. an e. = , , , singularities out the shape " sound .

  18. I 6- - be found References in can D . Lundberg Linear Ke E Holomorphic , Potential Classical PDE and a Monographs Theory , . Surveys Math , 2018 AMS 232 . , , Ln HappyEuerything.my ! ! John Don I FT ! CHEERS -

Recommend


More recommend