on p adic comparison theorems for analytic spaces
play

On p -adic comparison theorems for analytic spaces Wies lawa Nizio - PowerPoint PPT Presentation

Algebraic varieties Analytic varieties On p -adic comparison theorems for analytic spaces Wies lawa Nizio l, joint with Pierre Colmez CNRS, Sorbonne University July 27, 2020 Algebraic varieties Analytic varieties Algebraic comparison


  1. Algebraic varieties Analytic varieties On p -adic comparison theorems for analytic spaces Wies� lawa Nizio� l, joint with Pierre Colmez CNRS, Sorbonne University July 27, 2020

  2. Algebraic varieties Analytic varieties Algebraic comparison theorem Notation: K / Q p - finite, G K = Gal( K / K ), C = � K , K ⊃ O K → k , F = W ( k ). Theorem (Algebraic comparison theorem) X / K – algebraic variety. There exists a natural B st -linear, G K -equivariant period isomorphism ( r ≥ 0) H r et ( X K , Q p ) ⊗ Q p B st ≃ H r α pst : HK ( X K ) ⊗ F nr B st , ( ϕ, N , G K ) , ´ H r et ( X K , Q p ) ⊗ Q p B dR ≃ H r α dR : dR ( X K ) ⊗ K B dR , Fil , ´ where α dR = α pst ⊗ B dR .

  3. Algebraic varieties Analytic varieties Algebraic comparison theorem Notation: K / Q p - finite, G K = Gal( K / K ), C = � K , K ⊃ O K → k , F = W ( k ). Theorem (Algebraic comparison theorem) X / K – algebraic variety. There exists a natural B st -linear, G K -equivariant period isomorphism ( r ≥ 0) H r et ( X K , Q p ) ⊗ Q p B st ≃ H r α pst : HK ( X K ) ⊗ F nr B st , ( ϕ, N , G K ) , ´ H r et ( X K , Q p ) ⊗ Q p B dR ≃ H r α dR : dR ( X K ) ⊗ K B dR , Fil , ´ where α dR = α pst ⊗ B dR . Here: (1) H r dR ( X K ) – Deligne de Rham cohomology (uses resolution of singularities) (2) H r HK ( X K ) – Beilinson Hyodo-Kato cohomology (uses de Jong’s alterations)

  4. � � � � � Algebraic varieties Analytic varieties Hyodo-Kato cohomology (i) locally : in h -topology alterations allow U � � U sstable h − map Spec O L X finite Spec O K Then we have R Γ cr ( U 0 / O 0 H ∗ - finite rank / F L , ( a ) F L ) , ( ϕ, N ) , ι HK : R Γ cr ( U 0 / O 0 F L ) ⊗ L ( b ) F L L ≃ R Γ dR ( U ) .

  5. � � � � � Algebraic varieties Analytic varieties Hyodo-Kato cohomology (i) locally : in h -topology alterations allow U � � U sstable h − map Spec O L X finite Spec O K Then we have R Γ cr ( U 0 / O 0 H ∗ - finite rank / F L , ( a ) F L ) , ( ϕ, N ) , ι HK : R Γ cr ( U 0 / O 0 F L ) ⊗ L ( b ) F L L ≃ R Γ dR ( U ) . (ii) globalization : make (i) geometric and glue in h -topology. Get H ∗ - finite rank / F nr , R Γ HK ( X K ) , ( ϕ, N , G K ) , ι HK : R Γ HK ( X K ) ⊗ F nr K ≃ R Γ dR ( X K )

  6. Algebraic varieties Analytic varieties Restated algebraic comparison theorem (i) de Rham-to-´ etale comparison : H r et ( X K , Q p ) ≃ ( H r HK ( X K ) ⊗ F nr B st ) ϕ =1 , N =0 ∩ F 0 ( H r dR ( X ) ⊗ K B dR ) , G K , ´

  7. � � � � � � Algebraic varieties Analytic varieties Restated algebraic comparison theorem (i) de Rham-to-´ etale comparison : H r et ( X K , Q p ) ≃ ( H r HK ( X K ) ⊗ F nr B st ) ϕ =1 , N =0 ∩ F 0 ( H r dR ( X ) ⊗ K B dR ) , G K , ´ or: we have a bicartesian diagram ( r ≥ 0) HK ( X K ) ⊗ F nr B + st ) ϕ = p r , N =0 H r ( H r et ( X K , Q p ( r )) ´ dR ( X ) ⊗ K B + � H r dR ( X ) ⊗ K B + F r ( H r dR ) dR We will write it as (upper index refers to cohomology degree) HK r H r r ´ et , r � DR r H r ( F r )

  8. Algebraic varieties Analytic varieties or: there exists an exact sequence r → DR r → 0 0 → H r et , r → H r ( F r ) ⊕ HK r ´

  9. Algebraic varieties Analytic varieties or: there exists an exact sequence r → DR r → 0 0 → H r et , r → H r ( F r ) ⊕ HK r ´ (ii) ´ etale-to-de Rham comparison : et ( X K , Q p ) , B st ) G K − sm ≃ H r Hom( H r HK ( X K ) ∗ , ( ϕ, N , G K ) , ´ Hom G K ( H r et ( X K , Q p ) , B dR ) ≃ H r dR ( X K ) ∗ , Fil ´

  10. Algebraic varieties Analytic varieties Analytic varieties X / K - smooth rigid analytic variety Case 1 : X proper, (A) Scholze: (i) H r et ( X C , Q p ) is finite rank over Q p : ´ • Artin-Schreier to pass to coherent cohomology • Cartier-Serre argument for finitness of coherent cohomology (ii) Hodge-de Rham spectral sequence degenerates ⇒ get de Rham comparison isomorphism : H r et ( X C , Q p ) ⊗ Q p B dR ≃ H r α dR : dR ( X ) ⊗ K B dR , Fil , ´

  11. Algebraic varieties Analytic varieties (B) Colmez-Nizio� l: Algebraic comparison theorem holds (HK-cohomology is defined using Hartl and Temkin alterations instead of de Jong’s) H r et ( X C , Q p ) ⊗ Q p B st ≃ H r α pst : HK ( X C ) ⊗ F nr B st , ( ϕ, N , G K ) , ´ H r et ( X C , Q p ) ⊗ Q p B dR ≃ H r α dR : dR ( X ) ⊗ K B dR , Fil . ´

  12. Algebraic varieties Analytic varieties (B) Colmez-Nizio� l: Algebraic comparison theorem holds (HK-cohomology is defined using Hartl and Temkin alterations instead of de Jong’s) H r et ( X C , Q p ) ⊗ Q p B st ≃ H r α pst : HK ( X C ) ⊗ F nr B st , ( ϕ, N , G K ) , ´ H r et ( X C , Q p ) ⊗ Q p B dR ≃ H r α dR : dR ( X ) ⊗ K B dR , Fil . ´ (i) Tsuji, Kato, CN: p -adic nearby cycles = syntomic cohomology ( τ ≤ r ) ⇒ DR r − 1 f r − 1 f r → H r et , r → H r ( F r ) ⊕ HK r r → DR r → H r +1 − − − − ´ syn , r

  13. Algebraic varieties Analytic varieties (B) Colmez-Nizio� l: Algebraic comparison theorem holds (HK-cohomology is defined using Hartl and Temkin alterations instead of de Jong’s) H r et ( X C , Q p ) ⊗ Q p B st ≃ H r α pst : HK ( X C ) ⊗ F nr B st , ( ϕ, N , G K ) , ´ H r et ( X C , Q p ) ⊗ Q p B dR ≃ H r α dR : dR ( X ) ⊗ K B dR , Fil . ´ (i) Tsuji, Kato, CN: p -adic nearby cycles = syntomic cohomology ( τ ≤ r ) ⇒ DR r − 1 f r − 1 f r → H r et , r → H r ( F r ) ⊕ HK r r → DR r → H r +1 − − − − ´ syn , r (ii) Lift the sequence to the category of Banach-Colmez ( BC ) spaces Suffices : f r − 1 , f r = 0. For f r − 1 , have DR i / H i ( F r ) − Dim = ( d , 0) , H i et − Dim = (0 , h ) , h ≥ 0 . ´ But in BC category there is no map between such spaces. For f r : bring to this situation by twisting.

  14. Algebraic varieties Analytic varieties Digression: Banach-Colmez spaces What structure can we put on st ) N =0 ,ϕ =1 ≃ ( H n HK r r = ( H n HK ( X C ) ⊗ F nr B + HK ( X C ) ⊗ F nr B + cr ) ϕ =1 ?

  15. Algebraic varieties Analytic varieties Digression: Banach-Colmez spaces What structure can we put on st ) N =0 ,ϕ =1 ≃ ( H n HK r r = ( H n HK ( X C ) ⊗ F nr B + HK ( X C ) ⊗ F nr B + cr ) ϕ =1 ? Example 0 → Q p t → B + ,ϕ = p → C → 0 cr So B + ,ϕ = p ∼ C ⊕ Q p . cr

  16. Algebraic varieties Analytic varieties Digression: Banach-Colmez spaces What structure can we put on st ) N =0 ,ϕ =1 ≃ ( H n HK r r = ( H n HK ( X C ) ⊗ F nr B + HK ( X C ) ⊗ F nr B + cr ) ϕ =1 ? Example 0 → Q p t → B + ,ϕ = p → C → 0 cr So B + ,ϕ = p ∼ C ⊕ Q p . cr More generally, we have Fundamental exact sequence : 0 → Q p t m → B + ,ϕ = p m → B + dR / t m B + dR → 0 cr So: B + ,ϕ = p m ∼ C m ⊕ Q p . But In which category ? cr

  17. Algebraic varieties Analytic varieties Digression: Banach-Colmez spaces What structure can we put on st ) N =0 ,ϕ =1 ≃ ( H n HK r r = ( H n HK ( X C ) ⊗ F nr B + HK ( X C ) ⊗ F nr B + cr ) ϕ =1 ? Example 0 → Q p t → B + ,ϕ = p → C → 0 cr So B + ,ϕ = p ∼ C ⊕ Q p . cr More generally, we have Fundamental exact sequence : 0 → Q p t m → B + ,ϕ = p m → B + dR / t m B + dR → 0 cr So: B + ,ϕ = p m ∼ C m ⊕ Q p . But In which category ? cr Remark The category of topological vector spaces is not good: C ⊕ Q p ≃ C !

  18. Algebraic varieties Analytic varieties Theorem (Colmez, Fontaine) There exists an abelian category of Banach-Colmez vector spaces W which are finite dimensional C -vector spaces ± finite dimensional Q p -vector spaces. We have 1. Dim ( W ) := (dim C W , dim Q p W ); set ht W := dim Q p W 2. Dim ( W ) is additive on short exact sequences.

  19. Algebraic varieties Analytic varieties Theorem (Colmez, Fontaine) There exists an abelian category of Banach-Colmez vector spaces W which are finite dimensional C -vector spaces ± finite dimensional Q p -vector spaces. We have 1. Dim ( W ) := (dim C W , dim Q p W ); set ht W := dim Q p W 2. Dim ( W ) is additive on short exact sequences. Example dR / t m is B m with Dim ( B m ) = ( m , 0) . 1. B + 2. B + ,ϕ a = p b is U a , b with Dim ( U a , b ) = ( b , a ) . cr 3. C / Q p is V 1 / Q p with Dim = (1 , − 1) .

  20. Algebraic varieties Analytic varieties Case 2: X / K Stein: 1. there exists an admissible covering by affinoids · · · ⋐ U n ⋐ U n +1 ⋐ · · · 2. H i ( X , F ) = 0, F -coherent, i > 0 3. R Γ pro´ et ( X C , Q p ) ≃ holim n R Γ ´ et ( U n , C , Q p )

  21. Algebraic varieties Analytic varieties Case 2: X / K Stein: 1. there exists an admissible covering by affinoids · · · ⋐ U n ⋐ U n +1 ⋐ · · · 2. H i ( X , F ) = 0, F -coherent, i > 0 3. R Γ pro´ et ( X C , Q p ) ≃ holim n R Γ ´ et ( U n , C , Q p ) Examples (1) X = A K , r > 0 : H r et ( X C , Q p ( r )) ≃ Ω r − 1 ( A C ) / ker d , pro´ H 1 et ( X C , Q p (1)) ≃ O ( A C ) / C pro´

  22. Algebraic varieties Analytic varieties Case 2: X / K Stein: 1. there exists an admissible covering by affinoids · · · ⋐ U n ⋐ U n +1 ⋐ · · · 2. H i ( X , F ) = 0, F -coherent, i > 0 3. R Γ pro´ et ( X C , Q p ) ≃ holim n R Γ ´ et ( U n , C , Q p ) Examples (1) X = A K , r > 0 : H r et ( X C , Q p ( r )) ≃ Ω r − 1 ( A C ) / ker d , pro´ H 1 et ( X C , Q p (1)) ≃ O ( A C ) / C pro´ (2) X = G m , K , there exists an exact sequence 0 → O ( G m , C ) / C → H 1 et ( G m , C , Q p (1)) → Q p < dlog z > → 0 pro´ trivial G K -action on Q p < dlog z >

Recommend


More recommend