analysis of the parallel distinguished point tradeoff
play

Analysis of the Parallel Distinguished Point Tradeoff Jin Hong, *Ga - PowerPoint PPT Presentation

Analysis of the Parallel Distinguished Point Tradeoff Jin Hong, *Ga Won Lee, Daegun Ma Seoul National University 13/12/2011 J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 1 / 24 The Inversion Problem N : key space


  1. Analysis of the Parallel Distinguished Point Tradeoff Jin Hong, *Ga Won Lee, Daegun Ma Seoul National University 13/12/2011 J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 1 / 24

  2. The Inversion Problem N : key space with size N . F : N → N : one-way function The inversion problem For a given inversion target F ( x ) = y , Find x . J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 2 / 24

  3. The Inversion Problem N : key space with size N . F : N → N : one-way function The inversion problem For a given inversion target F ( x ) = y , Find x . J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 2 / 24

  4. The Inversion Problem N : key space with size N . F : N → N : one-way function The inversion problem For a given inversion target F ( x ) = y , Find x . Two extreme methods Exhaustive search : T=N, M=1, Dictionary attack : T=1, M=N, where T is total online time, M is storage size. J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 2 / 24

  5. The Inversion Problem Time Memory Tradeoff (Hellman) Pre-computation phase : pre-compute sufficiently many ( a, F ( a )) pairs, and store a digest of the computation in a table smaller than the complete dictionary. Online phase : given an inversion target, using the table, find the answer in time shorter than required by exhaustive search. J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 3 / 24

  6. The DP Tradeoff : pre-computation phase R. Rivest Choose parameters m, t satisfying mt 2 = N . J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 4 / 24

  7. The DP Tradeoff : pre-computation phase R. Rivest Choose parameters m, t satisfying mt 2 = N . DP (distinguished point) is an element satisfying a certain pre-set property. Here, the prob. of DP occurrence is set to 1 t . ( ex. X ≡ 0 mod t ) J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 4 / 24

  8. The DP Tradeoff : pre-computation phase R. Rivest Choose parameters m, t satisfying mt 2 = N . DP (distinguished point) is an element satisfying a certain pre-set property. Here, the prob. of DP occurrence is set to 1 t . ( ex. X ≡ 0 mod t ) 1. Construct t many DP matrices using F . - each chain is set to end on a DP.  SP 1 = ◦ F → ◦ F F → · · · · · · → ◦ = EP 1 : DP     SP 2 = ◦ F → ◦ F → · · · · · · F F  → · · · · · · → ◦ = EP 2 : DP  m . . .      SP m = ◦ F → · · · · · · F  → ◦ = EP m : DP : A single DP matrix J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 4 / 24

  9. The DP Tradeoff : pre-computation phase R. Rivest Choose parameters m, t satisfying mt 2 = N . DP (distinguished point) is an element satisfying a certain pre-set property. Here, the prob. of DP occurrence is set to 1 t . ( ex. X ≡ 0 mod t ) 1. Construct t many DP matrices using F . - each chain is set to end on a DP.  SP 1 = ◦ F → ◦ F F → · · · · · · → ◦ = EP 1 : DP     SP 2 = ◦ F → ◦ F → · · · · · · F F  → · · · · · · → ◦ = EP 2 : DP  m . . .      SP m = ◦ F → · · · · · · F  → ◦ = EP m : DP : A single DP matrix 2. Store { ( SP j , EP j ) } m j =1 only, throwing the rest out. J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 4 / 24

  10. The DP Tradeoff : online phase Given an inversion target y = F ( x ) 1. Online chian creation Create online chain from y . y F → ◦ F → ◦ F → · · · · · · F → • : DP J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 5 / 24

  11. The DP Tradeoff : online phase Given an inversion target y = F ( x ) 1. Online chian creation Create online chain from y . y F → ◦ F → ◦ F → · · · · · · F → • : DP Check if it matches an ending point in { EP j } . J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 5 / 24

  12. The DP Tradeoff : online phase Given an inversion target y = F ( x ) 1. Online chian creation Create online chain from y . y F → ◦ F → ◦ F → · · · · · · F → • : DP Check if it matches an ending point in { EP j } .  SP 1 = ◦ F → ◦ F F → · · · · · · → ◦ = EP 1 : DP     alarm!! SP 2 = ◦ F → ◦ F → · · · · · · F F  → · · · · · · → •  = EP 2 : DP m . . .      SP m = ◦ F → · · · · · · F  → ◦ = EP m : DP J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 5 / 24

  13. The DP Tradeoff : online phase 2. pre-computed chain regeneration Expectation : alarm!! SP 2 = ◦ F → ◦ F x F → y F → ◦ · · · · · · F → · · · · · · → • = EP 2 x F → y F → ◦ · · · · · · F → • J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 6 / 24

  14. The DP Tradeoff : online phase 2. pre-computed chain regeneration Expectation : alarm!! SP 2 = ◦ F → ◦ F x F → y F → ◦ · · · · · · F → · · · · · · → • = EP 2 x F → y F → ◦ · · · · · · F → • pre-computed chain regeneration : SP 2 = ◦ J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 6 / 24

  15. The DP Tradeoff : online phase 2. pre-computed chain regeneration Expectation : alarm!! SP 2 = ◦ F → ◦ F x F → y F → ◦ · · · · · · F → · · · · · · → • = EP 2 x F → y F → ◦ · · · · · · F → • pre-computed chain regeneration : SP 2 = ◦ F → ◦ J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 6 / 24

  16. The DP Tradeoff : online phase 2. pre-computed chain regeneration Expectation : alarm!! SP 2 = ◦ F → ◦ F x F → y F → ◦ · · · · · · F → · · · · · · → • = EP 2 x F → y F → ◦ · · · · · · F → • pre-computed chain regeneration : SP 2 = ◦ F → ◦ F → J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 6 / 24

  17. The DP Tradeoff : online phase 2. pre-computed chain regeneration Expectation : alarm!! SP 2 = ◦ F → ◦ F x F → y F → ◦ · · · · · · F → · · · · · · → • = EP 2 x F → y F → ◦ · · · · · · F → • pre-computed chain regeneration : SP 2 = ◦ F → ◦ F → · · · · · · F → J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 6 / 24

  18. The DP Tradeoff : online phase 2. pre-computed chain regeneration Expectation : alarm!! SP 2 = ◦ F → ◦ F x F → y F → ◦ · · · · · · F → · · · · · · → • = EP 2 x F → y F → ◦ · · · · · · F → • pre-computed chain regeneration : SP 2 = ◦ F → ◦ F → · · · · · · F → x J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 6 / 24

  19. The DP Tradeoff : online phase 2. pre-computed chain regeneration Expectation : alarm!! SP 2 = ◦ F → ◦ F x F → y F → ◦ · · · · · · F → · · · · · · → • = EP 2 x F → y F → ◦ · · · · · · F → • pre-computed chain regeneration : SP 2 = ◦ F → ◦ F → · · · · · · F → x F → y J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 6 / 24

  20. The DP Tradeoff : online phase 2. pre-computed chain regeneration Expectation : alarm!! SP 2 = ◦ F → ◦ F x F → y F → ◦ · · · · · · F → · · · · · · → • = EP 2 x F → y F → ◦ · · · · · · F → • pre-computed chain regeneration : SP 2 = ◦ F → ◦ F → · · · · · · F → x F → y ’ x ’ is just found!!! J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 6 / 24

  21. The DP Tradeoff : online phase However, x � = x Most case : Since F is not injective, ´ alarm!! SP 2 = ◦ F x F → ◦ F → • · · · F F → · · · ´ → ◦ · · · → • = EP 2 ր x F → y F → ◦ · · · J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 7 / 24

  22. The DP Tradeoff : online phase However, x � = x Most case : Since F is not injective, ´ alarm!! SP 2 = ◦ F x F → ◦ F → • · · · F F → · · · ´ → ◦ · · · → • = EP 2 ր x F → y F → ◦ · · · - It is called a false alarm . J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 7 / 24

  23. The DP Tradeoff : online phase However, x � = x Most case : Since F is not injective, ´ alarm!! SP 2 = ◦ F x F → ◦ F → • · · · F F → · · · ´ → ◦ · · · → • = EP 2 ր x F → y F → ◦ · · · - It is called a false alarm . pre-computed chain regeneration : SP 2 = ◦ F → · · · J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 7 / 24

  24. The DP Tradeoff : online phase However, x � = x Most case : Since F is not injective, ´ alarm!! SP 2 = ◦ F x F → ◦ F → • · · · F F → · · · ´ → ◦ · · · → • = EP 2 ր x F → y F → ◦ · · · - It is called a false alarm . pre-computed chain regeneration : SP 2 = ◦ F x F → ◦ F → · · · ´ → ◦ · · · J. Hong, G.W. Lee, D. Ma (SNU) Analysis of the pD tradeoff 13/12/2011 7 / 24

Recommend


More recommend