an ideal observer model for grouping and contour
play

An ideal observer model for grouping and contour integration in - PowerPoint PPT Presentation

Departement of Systems and Computational Biology Albert Einstein College of Medicine An ideal observer model for grouping and contour integration in natural images Jonathan Vacher With: Ruben Coen-Cagli (Albert Einstein College of Medicine,


  1. Departement of Systems and Computational Biology Albert Einstein College of Medicine An ideal observer model for grouping and contour integration in natural images Jonathan Vacher With: Ruben Coen-Cagli (Albert Einstein College of Medicine, New-York) and Pascal Mamassian (LSP, ´ Ecole Normale Sup´ erieure, Paris). ECVP 29/08/2019 jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 1 /13

  2. Image Segmentation vs Visual Segmentation jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 2 /13

  3. Image Segmentation vs Visual Segmentation Great progress with deep learning: ◮ mostly supervised learning ( ∼ top-down approach) ◮ smart architecture but different from biological vi- sion ◮ performance oriented ◮ work as a black box jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 2 /13

  4. Image Segmentation vs Visual Segmentation Great progress with deep learning: ◮ mostly supervised learning ( ∼ top-down approach) ◮ smart architecture but different from biological vi- sion ◮ performance oriented ◮ work as a black box Visual segmentation is more involved ! ◮ variable but consistent across humans ◮ top-down + bottom-up processing Our goal is to craft an open box model with all the ingredient of vision ! jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 2 /13

  5. Grouping and contours integration: a basis for visual segmentation ? jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 3 /13

  6. Grouping and contours integration: a basis for visual segmentation ? Contour perception (Field et al. 1993) jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 3 /13

  7. Grouping and contours integration: a basis for visual segmentation ? Contour perception (Field et al. 1993) Texture perception (Landy et al. 2001) jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 3 /13

  8. Grouping and contours integration: a basis for visual segmentation ? Contour perception (Field et al. 1993) Texture perception (Landy et al. 2001) Artificial stimuli ! jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 3 /13

  9. Grouping and contours integration: a basis for visual segmentation ? Contour perception (Field et al. 1993) Texture perception (Landy et al. 2001) Artificial stimuli ! Tractable models and well-controlled experiments . . . jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 3 /13

  10. Grouping and contours integration: a basis for visual segmentation ? Contour perception (Field et al. 1993) Texture perception (Landy et al. 2001) Artificial stimuli ! Tractable models and well-controlled experiments . . . but how to generalize to natural images ? jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 3 /13

  11. Toward an ideal observer model for visual segmentation An ideal observer for visual segmentation of natural images ! jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 4 /13

  12. Toward an ideal observer model for visual segmentation An ideal observer for visual segmentation of natural images ! jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 4 /13

  13. Toward an ideal observer model for visual segmentation An ideal observer for visual segmentation of natural images ! ◮ To guide future model driven psychophysical experiments (ongoing work, not presented here) jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 4 /13

  14. Toward an ideal observer model for visual segmentation An ideal observer for visual segmentation of natural images ! ◮ To guide future model driven psychophysical experiments (ongoing work, not presented here) Several constraints: jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 4 /13

  15. Toward an ideal observer model for visual segmentation An ideal observer for visual segmentation of natural images ! ◮ To guide future model driven psychophysical experiments (ongoing work, not presented here) Several constraints: ◮ Image statistics jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 4 /13

  16. Toward an ideal observer model for visual segmentation An ideal observer for visual segmentation of natural images ! ◮ To guide future model driven psychophysical experiments (ongoing work, not presented here) Several constraints: ◮ Image statistics ◮ Cortical features jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 4 /13

  17. Toward an ideal observer model for visual segmentation An ideal observer for visual segmentation of natural images ! ◮ To guide future model driven psychophysical experiments (ongoing work, not presented here) Several constraints: ◮ Vision psychophysics ◮ Image statistics ◮ Cortical features jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 4 /13

  18. Representation and non-Gaussian statistics of natural images How are images represented ? jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 5 /13

  19. Representation and non-Gaussian statistics of natural images How are images represented ? ⇒ decomposition in a wavelet basis (receptive fields) (Bell et al. 1997; Olshausen et al. 1996) ◮ X = ( X 1 , . . . , X n ) T = ( � w 1 , I � , . . . , � w n , I � ) T ( w k ) k = I = jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 5 /13

  20. Representation and non-Gaussian statistics of natural images How are images represented ? ⇒ decomposition in a wavelet basis (receptive fields) (Bell et al. 1997; Olshausen et al. 1996) ◮ X = ( X 1 , . . . , X n ) T = ( � w 1 , I � , . . . , � w n , I � ) T What are the coefficient statistics ? jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 5 /13

  21. Representation and non-Gaussian statistics of natural images How are images represented ? ⇒ decomposition in a wavelet basis (receptive fields) (Bell et al. 1997; Olshausen et al. 1996) ◮ X = ( X 1 , . . . , X n ) T = ( � w 1 , I � , . . . , � w n , I � ) T What are the coefficient statistics ? Non-Gaussian ! (Wainwright et al. 2000) Histogram of x 1 0 . 3 0 . 2 0 . 1 0 . 0 − 5 0 5 jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 5 /13

  22. Representation and non-Gaussian statistics of natural images How are images represented ? ⇒ decomposition in a wavelet basis (receptive fields) (Bell et al. 1997; Olshausen et al. 1996) ◮ X = ( X 1 , . . . , X n ) T = ( � w 1 , I � , . . . , � w n , I � ) T What are the coefficient statistics ? Non-Gaussian ! (Wainwright et al. 2000) Definition (Gaussian Scale Mixture) Gaussian vector of visual features (G ∼ N (0 , Σ) ) × Contrast between features (Z ∼ L ( ν ) ) X = ZG . Density of X 1 knowing Z = z Histogram of x 1 0 . 4 0 . 3 Density Z = z ր 0 . 2 0 . 2 0 . 1 0 . 0 0 . 0 − 5 − 5 0 5 0 5 jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 5 /13

  23. Representation and non-Gaussian statistics of natural images How are images represented ? ⇒ decomposition in a wavelet basis (receptive fields) (Bell et al. 1997; Olshausen et al. 1996) ◮ X = ( X 1 , . . . , X n ) T = ( � w 1 , I � , . . . , � w n , I � ) T What are the coefficient statistics ? Non-Gaussian ! (Wainwright et al. 2000) Definition (Gaussian Scale Mixture) Gaussian vector of visual features (G ∼ N (0 , Σ) ) × Contrast between features (Z ∼ L ( ν ) ) X = ZG . Density of X 1 knowing Z = z Z : random variable 0 . 4 0 . 3 0 . 3 Density Z = z ր 0 . 2 0 . 2 0 . 2 0 . 1 0 . 1 0 . 0 0 . 0 0 . 0 − 5 − 5 − 5 0 5 0 0 5 5 jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 5 /13

  24. Representation and non-Gaussian statistics of natural images How are images represented ? ⇒ decomposition in a wavelet basis (receptive fields) (Bell et al. 1997; Olshausen et al. 1996) ◮ X = ( X 1 , . . . , X n ) T = ( � w 1 , I � , . . . , � w n , I � ) T What are the coefficient statistics ? Non-Gaussian ! (Wainwright et al. 2000) Definition (Gaussian Scale Mixture) Gaussian vector of visual features (G ∼ N (0 , Σ) ) × Contrast between features (Z ∼ L ( ν ) ) X = ZG . Density of X 1 knowing Z = z Z : random variable 0 . 4 ◮ Heavy-tailed distribu- 0 . 3 0 . 3 Density tions . . . Z = z ր 0 . 2 0 . 2 0 . 2 ◮ and non-linear depen- 0 . 1 0 . 1 dencies ! 0 . 0 0 . 0 0 . 0 − 5 − 5 − 5 0 5 0 0 5 5 jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 5 /13

  25. Gaussian Scale Mixture explains surround modulation in V1 jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 6 /13

  26. Gaussian Scale Mixture explains surround modulation in V1 Taken from Coen-Cagli, Dayan, et al. 2012 jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 6 /13

  27. Gaussian Scale Mixture explains surround modulation in V1 Taken from Coen-Cagli, Dayan, et al. 2012 GSM ⇒ normalization: X = ( X ( c ) , X ( s ) ) , G = ( G ( c ) , G ( s ) ) X ( c ) G ( c ) ∝ � k w k X 2 ν + � k jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 6 /13

  28. Gaussian Scale Mixture explains surround modulation in V1 Taken from Coen-Cagli, Dayan, et al. 2012 Interpretation: GSM ⇒ normalization: ◮ G : vector of neurons responses (Coen-Cagli X = ( X ( c ) , X ( s ) ) , G = ( G ( c ) , G ( s ) ) and Schwartz 2013; Orb´ an et al. 2016) X ( c ) ◮ Z : normalization (canonical across the brain G ( c ) ∝ � Carandini et al. 2012) k w k X 2 ν + � k jonathan.vacher@einstein.yu.edu https://jonathanvacher.github.io 6 /13

Recommend


More recommend