an existence result for a class of mean field games of
play

An Existence Result for a Class of Mean Field Games of Controls - PowerPoint PPT Presentation

Cournot equilibria Model Potential formulation Existence result Duality Lagrangian formulation An Existence Result for a Class of Mean Field Games of Controls Laurent Pfeiffer Inria and Ecole Polytechnique, Institut Polytechnique de Paris


  1. Cournot equilibria Model Potential formulation Existence result Duality Lagrangian formulation An Existence Result for a Class of Mean Field Games of Controls Laurent Pfeiffer Inria and Ecole Polytechnique, Institut Polytechnique de Paris Joint work with J. Fr´ ed´ eric Bonnans, Justina Gianatti, and Saeed Hadikhanloo Two-Days Online Workshop on Mean-Field Games, June 18, 2020

  2. Cournot equilibria Model Potential formulation Existence result Duality Lagrangian formulation Introduction The Mean-Field Game (MFG) model: Coupling (` a la Cournot) via endogenous price variable P Price related to the distribution of (states,controls). − → MFG of controls = extended MFG, strongly coupled MFG... Topics: Existence (2nd order case) Duality Lagrangian approach (1st order case).

  3. Cournot equilibria Model Potential formulation Existence result Duality Lagrangian formulation 1 Cournot equilibria 2 MFG model 3 Reduction of the system and potential formulation 4 Existence result 5 Duality 6 Lagrangian formulation for the first-order case

  4. Cournot equilibria Model Potential formulation Existence result Duality Lagrangian formulation 1 Cournot equilibria 2 MFG model 3 Reduction of the system and potential formulation 4 Existence result 5 Duality 6 Lagrangian formulation for the first-order case

  5. Cournot equilibria Model Potential formulation Existence result Duality Lagrangian formulation Cournot equilibria Consider N producers, buy some raw material on a market. Quantity bought by producer i : v i Benefit resulting from v i : − L i ( v i ) Unitary price of raw material: P = Ψ( � N i =1 v i ). v ∈ R N such that Nash equilibrium: a vector ¯ � �� N � � v i ∈ arg min ¯ L i ( v i ) + Ψ j =1 ¯ v j v i , v i ∈ R for i = 1 , ..., N . Remark The producers do not take into account their contribution to the equilibrium price P.

  6. Cournot equilibria Model Potential formulation Existence result Duality Lagrangian formulation Potential formulation Assumptions: L 1 ,..., L N are strongly convex Ψ = ∇ Φ, with Φ convex Potential formulation: �� N � Let B : v ∈ R N �→ B ( v ) = � N i =1 L i ( v i ) + Φ i =1 v i . Then, v ∈ R N is a Nash equilibrium ¯ �� N � ⇐ ⇒ ∇ L i (¯ v i ) + Ψ j =1 ¯ v j = 0 = ∇ v i B (¯ v ) , ∀ i = 1 , ..., N ⇐ ⇒ ¯ v minimizes B . Implies existence and uniqueness ( B is strongly convex). Remark MFG model: a dynamic version with infinitely many agents.

  7. Cournot equilibria Model Potential formulation Existence result Duality Lagrangian formulation 1 Cournot equilibria 2 MFG model 3 Reduction of the system and potential formulation 4 Existence result 5 Duality 6 Lagrangian formulation for the first-order case

  8. Cournot equilibria Model Potential formulation Existence result Duality Lagrangian formulation MFG model Coupled system:  ( i ) − ∂ t u − σ ∆ u + H ( ∇ u + P ) = 0 ( x , t ) ∈ Q ,     ( ii ) ∂ t m − σ ∆ m + div ( vm ) = 0 ( x , t ) ∈ Q ,    �� � ( iii ) P ( t ) = Ψ T d v ( x , t ) m ( x , t ) d x t ∈ [0 , T ] , (MFGC)   ( iv ) v = −∇ H ( ∇ u + P ) ( x , t ) ∈ Q ,      x ∈ T d , ( v ) m ( x , 0) = m 0 ( x ) , u ( x , T ) = g ( x ) u ( x , t ) value function v ( x , t ) feedback Unknowns: m ( x , t ) distribution P ( t ) price H Hamiltonian Ψ price function Data: m 0 initial distrib. g terminal cost

  9. Cournot equilibria Model Potential formulation Existence result Duality Lagrangian formulation MFG of controls Equation (i): Hamilton-Jacobi-Bellman (HJB) equation . Associated stochastic optimal control problem:  �� T �   inf L ( α s ) + � P ( s ) , α s � d s + g ( X T ) , α ∈ L 2 ( t , T ) E u ( x , t ) = t √   s.t.: d X s = α s d s + 2 σ d W s , X t = x . X s stock at time s α s bought/sold quantity P ( s ) unitary price . Equation (ii): Fokker-Planck equation.

  10. Cournot equilibria Model Potential formulation Existence result Duality Lagrangian formulation MFG of controls Equation (iii): price relation. � � � P ( t ) = Ψ T d v ( x , t ) m ( x , t ) d x � �� � → Demand Equation (iv): optimal feedback law. v ( x , t ) = −∇ H ( ∇ u ( x , t ) + P ( t )) . Remark Given m and u, the feedback v cannot be recovered in an explicit fashion → MFG of controls 1 . Equilibrium problem for each time t (involving P and v). 1 Graber & Bensoussan ’15, Gomes & Voskanyan ’16, Cardaliaguet & Lehalle ’18, Kobeissi ’19, Graber, Ignazio & Neufeld ’20,...

  11. Cournot equilibria Model Potential formulation Existence result Duality Lagrangian formulation An example An idealized model from electrical engineering 2 : Large population of storage devices State variable x ∈ (0 , 2): State-of-charge Control α : Relative loading speed Reference demand D ref ( t ) Price function: � 2 P ( t ) = β D rel ( t ) , D rel ( t ) = D ref ( t ) + 0 v ( x , t ) m ( x , t ) d x Cost: L ( α ) = 1 2 α 2 , g ( x ) = − β D ref x Deterministic dynamics: σ = 0 2 Couillet et al. ’12, De Paola et al. ’16, Alasseur, Ben Tahar & Matoussi ’20, Gomes & Sa´ ude ’20

  12. Cournot equilibria Model Potential formulation Existence result Duality Lagrangian formulation Results 2 2 0 1 -2 0 0 0.5 1 0 0.5 1 (a) Reference and relative demands (b) Distribution Figure: Equilibrium results β = 0 . 25 (small coupling)

  13. Cournot equilibria Model Potential formulation Existence result Duality Lagrangian formulation Results 2 2 0 1 -2 0 0 0.5 1 0 0.5 1 (a) Reference and relative demands (b) Distribution Figure: Equilibrium results β = 2 (strong coupling)

  14. Cournot equilibria Model Potential formulation Existence result Duality Lagrangian formulation 1 Cournot equilibria 2 MFG model 3 Reduction of the system and potential formulation 4 Existence result 5 Duality 6 Lagrangian formulation for the first-order case

  15. Cournot equilibria Model Potential formulation Existence result Duality Lagrangian formulation Functional framework Given α ∈ (0 , 1) and X = [0 , T ], X = T d , or X = Q , � C j + α ( X ) := u ∈ C j ( X ) | ∃ C > 0 , ∀ x , y ∈ X , � � D i u ( y ) − D i u ( x ) � ≤ C � y − x � α X , ∀ i ≤ j � C α,α/ 2 ( Q ) := u ∈ C ( Q ) | ∃ C > 0 , ∀ x , y ∈ X , � x 2 − x 1 � α + | t 2 − t 1 | α/ 2 �� � | u ( x 2 , t 2 ) − u ( x 1 , t 1 ) | ≤ C � C 2+ α, 1+ α/ 2 ( Q ) := u ∈ C α,α/ 2 ( Q ) | ∂ t u ∈ C α,α/ 2 ( Q ) , � ∇ u ∈ C α,α/ 2 ( Q ) , ∇ 2 u ∈ C α,α/ 2 ( Q ) . We fix p > d + 2 and define the Sobolev space W 2 , 1 , p ( Q ) := L p (0 , T ; W 2 , p ( Q )) ∩ W 1 , p ( Q ) . Embedding: � u � C α ( Q ) + �∇ u � C α ( Q ) ≤ C � u � W 2 , 1 , p ( Q ) .

  16. Cournot equilibria Model Potential formulation Existence result Duality Lagrangian formulation Assumptions Monotonicity assumptions: Ψ = ∇ Φ, where Φ is convex L is strongly convex. Growth assumptions: L ( v ) ≤ C (1 + � v � 2 ) Ψ( z ) ≤ C (1 + � z � ). Regularity assumptions: H ∈ C 2 ( R d ), H , ∇ H , ∇ 2 H are locally H¨ older continuous Ψ is locally H¨ older continuous m 0 ∈ C 2+ α ( T d ), g ∈ C 2+ α ( T d ) � m 0 ∈ D 1 ( T d ) := { h ∈ L ∞ ( T d ) | h ≥ 0 , T d h ( x ) d x = 1 } .

  17. Cournot equilibria Model Potential formulation Existence result Duality Lagrangian formulation Auxiliary mappings We analyse ( iii ) and ( iv ) to eliminate v and P from (MFGC). Lemma For all m ∈ D 1 ( T d ) , for all w ∈ L ∞ ( T d , R d ) , there exists a unique pair ( v , P ) = ( v ( m , w ) , P ( m , w )) ∈ L ∞ ( T d , R d ) × R d such that � ∀ x ∈ T d , v ( x ) = −∇ H ( w ( x ) + P ) , ( ∗ ) �� � P = Ψ T d v ( x ) m ( x ) dx . Elements of proof. If m > 0, then ( v , P ) satisfies ( ∗ ) if and only if v minimizes the following convex functional: � �� � � � J ( v ): v �→ Φ T d v ( x ) m ( x ) d x + L ( v ( x ))+ � w ( x ) , v ( x ) � m ( x ) d x , T d which possesses a unique minimizer.

  18. Cournot equilibria Model Potential formulation Existence result Duality Lagrangian formulation Auxiliary mappings Reduced coupled system:  − ∂ t u − σ ∆ u + H ( ∇ u + P ( m ( · , t ) , ∇ u ( · , t ))) = 0 ,   ∂ t m − σ ∆ m + div ( v ( m ( · , t ) , ∇ u ( · , t )) m ) = 0 ,   u ( x , T ) = g ( x ) , m ( x , 0) = m 0 ( x ) . ( MFGC ′ ) Lemma (Stability lemma) Let R > 0 , let m 1 and m 2 ∈ D 1 ( T d ) , let w 1 and w 2 ∈ L ∞ ( T d , R d ) with � w i � L ∞ ( T d , R d ) ≤ R. There exists C > 0 and α ∈ (0 , 1) , depending on R only such that � P ( m 2 , w 2 ) − P ( m 1 , w 1 ) � � � � w 2 − w 1 � α L ∞ ( T d ) + � m 2 − m 1 � α ≤ C . L 1 ( T d ) Idea of proof: stability analysis for convex optimization problems.

Recommend


More recommend