an ecdsa processor for rfid authentication
play

An ECDSA Processor for RFID Authentication Michael Hutter, Martin - PowerPoint PPT Presentation

VLSI Institute for Applied Information Processing and Communications (IAIK) VLSI & Security An ECDSA Processor for RFID Authentication Michael Hutter, Martin Feldhofer, and Thomas Plos Workshop on RFID Security 2010 07. - 09.06.2010,


  1. VLSI Institute for Applied Information Processing and Communications (IAIK) – VLSI & Security An ECDSA Processor for RFID Authentication Michael Hutter, Martin Feldhofer, and Thomas Plos Workshop on RFID Security 2010 07. - 09.06.2010, Istanbul, Turkey Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology TU Graz/Computer Science/IAIK/VLSI Michael Hutter 1

  2. VLSI Institute for Applied Information Processing and Communications (IAIK) – VLSI & Security Outline  Motivation  Implementation Requirements  The ECDSA Processor  The System Architecture  Memory Unit and Datapath  Microcontroller  Instruction Set Extensions for ECDSA  Synthesis Results  Conclusion TU Graz/Computer Science/IAIK/VLSI Michael Hutter 2

  3. VLSI Institute for Applied Information Processing and Communications (IAIK) – VLSI & Security Motivation  RFID is one key enabler for the “Internet of Things”  Intelligent “smart things/tags” extend the Internet  Tags are already integrated into many products  There are still open issues in realizing a “secure Internet of things” TU Graz/Computer Science/IAIK/VLSI Michael Hutter 3

  4. VLSI Institute for Applied Information Processing and Communications (IAIK) – VLSI & Security Requirements  Digital-signature service  To provide a transferable proof of origin  Message authentication, non-repudiation, data integrity  Asymmetric cryptography  Large scale deployment  Integration in open-loop systems (Internet)  Standardized algorithms  ECDSA has been tested/proved over many years  Existing PKI (X.509 certificates using ECDSA)  Strong authentication  Challenge-response protocol (e.g. ISO/IEC 9798-3)  Low-resource HW design TU Graz/Computer Science/IAIK/VLSI Michael Hutter 4

  5. VLSI Institute for Applied Information Processing and Communications (IAIK) – VLSI & Security What we did?  Design of an ECDSA processor for RFID  Based on NIST recommended elliptic curve GF(p192) TU Graz/Computer Science/IAIK/VLSI Michael Hutter 5

  6. VLSI Institute for Applied Information Processing and Communications (IAIK) – VLSI & Security Tag Authentication using ECDSA TU Graz/Computer Science/IAIK/VLSI Michael Hutter 6

  7. VLSI Institute for Applied Information Processing and Communications (IAIK) – VLSI & Security Memory Unit  16-bit dual ported interface  Concurrently read/write from/to two ports  RAM macro (128x16 bit)  ROM  ECC constants (e.g. base point P) IN_A IN_B  EEPROM EEPROM  Stores the private key addr addr  Stores the certificate EEPROM ROM Port A Port B RAM RAM OUT_A OUT_B TU Graz/Computer Science/IAIK/VLSI Michael Hutter 7

  8. VLSI Institute for Applied Information Processing and Communications (IAIK) – VLSI & Security 16-bit Datapath Port A Port B  16x16-bit multiply 16 16 accumulate (MAC) unit  1 cycle 16-bit operations 1 0 FFFF  Two 40-bit adders bitop logic mul 40 16 16  One 40-bit accumulator 20 16 0 16 16 1 16x16  Feedback of ACCU signal acc mux multiplier  Logic operations for SHA1 20 40 adder1  XOR, AND, OR 40 32  Writing into memory using adder2 two 16-bit values ACC concurrently 40 Port A Port B TU Graz/Computer Science/IAIK/VLSI Michael Hutter 8

  9. VLSI Institute for Applied Information Processing and Communications (IAIK) – VLSI & Security 8-bit Microcontroller  32 instructions supported reg_in 4 ROM 8 8  Arithmetic operations (ADD, SUB,…) Program counter Register file  Logical operations (OR, AND,…) 16 x 8-bit I/O 12 Address  Control operations (GOTO, CALL,…) Data memory Prog. ROM  Register file and program ROM 600 x 16-bit ECDSA  Instruction decoder, ALU, PCH SHA-1 2 STATUS ACC Counter,… …... Instruction 16 Mux  Two-stage pipeline (fetch and reg_out1 ROM reg_out2 8 8 8 16 execute) Instruction Status  Call-stack support (3 recursive ALU decode unit subroutines possible) ALU out  Self-written Java compiler TU Graz/Computer Science/IAIK/VLSI Michael Hutter 9

  10. VLSI Institute for Applied Information Processing and Communications (IAIK) – VLSI & Security Instruction Set Extensions  55 ISEs for ECDSA and SHA1  Can be executed by the microcontroller by a MICRO instruction  Implemented in 8 ROM tables  Area reduction through different table sizes  Modular arithmetic  Addition: 32 cycles  Subtraction: 38 cycles  Multiplication: 204 cycles  NIST reduction applied (p 192 ≡ 2 192 –2 64 –1)  Montgomery arithmetic  Inversion: 20823 cycles  Multiplication: 785 cycles  SHA1: 3455 cycles TU Graz/Computer Science/IAIK/VLSI Michael Hutter 10

  11. VLSI Institute for Applied Information Processing and Communications (IAIK) – VLSI & Security Improving ECC Point Multiplication  Montgomery Ladder  Use of x-coordinate only formulas (Brier and Joye)  Combined double-and-add (Izu, Möller, and Takagi)  Common-Z coordinate representation (Meloni, Lee)  Total: 12M + 4S + 9add + 7sub  7x192-bit RAM used TU Graz/Computer Science/IAIK/VLSI Michael Hutter 11

  12. VLSI Institute for Applied Information Processing and Communications (IAIK) – VLSI & Security Implementation Attack Countermeasures  SPA  Montgomery Ladder  DPA  Randomized Projective Coordinates (S. Coron)  First-order blinding of the private-key multiplication instead of  Fault Injections  Check of curve equation after point multiplication (Ebeid and Lambert)  Y recovery necessary TU Graz/Computer Science/IAIK/VLSI Michael Hutter 12

  13. VLSI Institute for Applied Information Processing and Communications (IAIK) – VLSI & Security Synthesis Results  Cadence RTL Compiler (0.35 µm CMOS)  Synopsys NanoSim for power simulation  387 µA mean current at 3.3 volt and 847 kHz Chip Area Power Consumption 43,17% RAM MCU 3,08% 23,78% R O M Prog. ROM Datapath 3,52% ISE 15,63% 7,04% 3,74% Clock TU Graz/Computer Science/IAIK/VLSI Michael Hutter 13

  14. VLSI Institute for Applied Information Processing and Communications (IAIK) – VLSI & Security Comparison with Related Work TU Graz/Computer Science/IAIK/VLSI Michael Hutter 14

  15. VLSI Institute for Applied Information Processing and Communications (IAIK) – VLSI & Security Conclusions  Improved the state-of-the-art in designing a low- resource ECC hardware processor  First ECDSA hardware implementation results  Fully capable digital signature generating device  Allows proof of origin to prevent product counterfeiting  Sample implementation  Processor will be integrated in an NFC-compliant HF tag  Fabricated in summer 2010 TU Graz/Computer Science/IAIK/VLSI Michael Hutter 15

  16. VLSI Institute for Applied Information Processing and Communications (IAIK) – VLSI & Security Thanks for your attention! http://www.iaik.tugraz.at/content/research/implementation_attacks/ Michael Hutter IAIK – Graz University of Technology michael.hutter@iaik.tugraz.at www.iaik.tugraz.at TU Graz/Computer Science/IAIK/VLSI Michael Hutter 16

  17. VLSI Institute for Applied Information Processing and Communications (IAIK) – VLSI & Security Montgomery Ladder TU Graz/Computer Science/IAIK/VLSI Michael Hutter 17

Recommend


More recommend