aerodynamic and static aeroelastic numerical simulations
play

aerodynamic and static aeroelastic numerical simulations for the 6th - PowerPoint PPT Presentation

aerodynamic and static aeroelastic numerical simulations for the 6th aiaa cfd drag prediction workshop 6th AIAA CFD Drag Prediction Workshop - 2016 Rodrigo Felix de Souza Murilo C. Mestriner Maximiliano A. F. de Souza Marcello Areal Ferrari


  1. aerodynamic and static aeroelastic numerical simulations for the 6th aiaa cfd drag prediction workshop 6th AIAA CFD Drag Prediction Workshop - 2016 Rodrigo Felix de Souza Murilo C. Mestriner Maximiliano A. F. de Souza Marcello Areal Ferrari Carlos Breviglieri Cleber Spode June 16, 2016 Embraer S/A

  2. Outline Introduction Numerical simulations results Case 1 Case 2 Case 3 Case 5 Bonus track 1

  3. introduction

  4. Considered Cases and solver setup SST and SA (case 1 only) Minmod compression 2 : TVD limiter Nodal-based : Polynomial type Finite volume, 2nd order : Spatial discretization Point-implicit (SGS) / Algebraic multigrid : Time integration : Considered four series of computations: Turbulence model Pre-conditioned compressible RANS, perfect gas : Formulation CFD++ (14.1.1) : Solver Solver setup ∙ Case 5: CRM WB Coupled Aero-Structural Simulation; ∙ Case 3: CRM WB Static Aero-Elastic Effect; ∙ Case 2: CRM Nacelle-Pylon Drag Increment; ∙ Case 1: Verification study; 3

  5. Grids Grids @ Tiny level (a) CommonHybrid (b) CustomHexa 4

  6. Grids Grids @ Tiny level (c) CustomHybrid-I (d) CustomHybrid-A 5

  7. Grids 70.3 We matched the gridding guidelines for number of cells! 68.6 25.7 20.3 8.0 CustomHybrid-I 72.6 23.9 19.7 9.4 CustomHybrid-A 69.6 20.0 Grid sizes in million (WB-AE275): 20.3 CustomHexa 271.2 66.2 83.6 20.5 CommonHybrid Cells Nodes Cells Nodes Fine Tiny 6

  8. numerical simulations results

  9. Case 1: Verification Study = SA and SST (CFD++) Turbulence model: TMBWG Family II NACA 0012 Grid: 10 degrees AOA Flow condition: 6 million = Re 0.15 = M 8

  10. Case 1: Verification Study Grid convergence: Lift 9 1.110 CFD++ - SST CFD++ - SA CFL3D - SA FUN3D - SA 1.100 1.090 C L 1.080 1.070 1.060 0.000 0.002 0.004 0.006 0.008 0.010 h=sqrt(1/N)

  11. Case 1: Verification Study Grid convergence: Drag 9 0.018 CFD++ - SST CFD++ - SA CFL3D - SA 0.017 FUN3D - SA 0.016 C D 0.015 0.014 0.013 0.012 0.000 0.002 0.004 0.006 0.008 0.010 h=sqrt(1/N)

  12. Case 1: Verification Study Grid convergence: Drag (pressure component) 9 0.0120 CFD++ - SST CFD++ - SA 0.0110 CFL3D - SA FUN3D - SA 0.0100 0.0090 C D P 0.0080 0.0070 0.0060 0.0050 0.0040 0.000 0.002 0.004 0.006 0.008 0.010 h=sqrt(1/N)

  13. Case 1: Verification Study Grid convergence: Drag (viscous component) 9 0.0062 CFD++ - SST 0.0062 CFD++ - SA CFL3D - SA 0.0061 FUN3D - SA 0.0061 0.0060 0.0060 C D V 0.0059 0.0059 0.0058 0.0058 0.0057 0.0057 0.000 0.002 0.004 0.006 0.008 0.010 h=sqrt(1/N)

  14. Case 1: Verification Study Pressure distribution @ finest grid 10 -7.0 CFD++ - SST CFD++ - SA -6.0 CFL3D - SA FUN3D - SA -5.0 -4.0 -3.0 C P -2.0 -1.0 0.0 1.0 2.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 x/c

  15. Case 1: Verification Study Pressure distribution @ finest grid 10 -7.0 CFD++ - SST -6.0 CFD++ - SA -6.0 CFL3D - SA -5.5 FUN3D - SA -5.0 -5.0 -4.0 -4.5 Cp @ L.E. -3.0 -4.0 C P 0.00 0.01 -2.0 -1.0 0.0 1.0 2.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 x/c

  16. Case 1: Verification Study Skin friction @ finest grid 11 0.035 CFD++ - SST CFD++ - SA 0.030 CFL3D - SA FUN3D - SA 0.025 0.020 0.015 C F X 0.010 0.005 0.000 -0.005 -0.010 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 x/c

  17. Case 2: CRM Nacelle-Pylon Drag Increment : Aeroelastic deflection at the angle-of-attack 2.75 degrees Geometry: T,C,M,F : CustomHybrid-A T,C,M,F : CustomHybrid-I T,C,M,F,X,U (WB only) : CustomHexa T,C,M,F CommonHybrid Flow condition: Grids: SST (CFD++) Turbulence model: 0.50 = CL 5 million = Re 0.85 = M 12

  18. Case 2: CRM Nacelle-Pylon Drag Increment Total drag convergence @ WB 13 0.0260 CommonHybrid WB ⎯ CustomHexa 0.0259 ↕ CustomHybrid-A CustomHybrid- I 1 Drag Count ⎯ 0.0258 ➪ 0.0257 CustomHybrid-I ➪ CustomHexa ➪ CustomHybrid-A 0.0256 CD TOT 0.0255 ➪ CommonHybrid 0.0254 0.0253 0.0252 100M 26M 20M 8M 0.0251 0.0250 0.0e+00 5.0e-06 1.0e-05 1.5e-05 2.0e-05 2.5e-05 3.0e-05 GRIDFAC = 1/GRIDSIZE (2/3)

  19. Case 2: CRM Nacelle-Pylon Drag Increment Total drag convergence @ WBNP 13 0.0284 CommonHybrid WBNP ⎯ CustomHybrid-A 0.0283 ↕ CustomHybrid- I 1 Drag Count ⎯ 0.0282 ➪ CustomHybrid-I 0.0281 0.0280 CD TOT 0.0279 ➪ CustomHybrid-A 0.0278 0.0277 0.0276 ➪ CommonHybrid 91M 36M 28M 11M 0.0275 0.0274 0.0e+00 5.0e-06 1.0e-05 1.5e-05 2.0e-05 2.5e-05 3.0e-05 GRIDFAC = 1/GRIDSIZE (2/3)

  20. Case 2: CRM Nacelle-Pylon Drag Increment Delta NP drag convergence (WBNP-WB) 13 0.0028 CommonHybrid ∆ NP ⎯ CustomHybrid-A 0.0027 ↕ CustomHybrid- I 1 Drag Count ⎯ 0.0026 TINY 0.0025 FINE ➪ CustomHybrid-I 0.0024 ∆ CD TOT TINY 0.0023 ➪ CustomHybrid-A FINE 0.0022 ➪ CommonHybrid FINE 0.0021 TINY 0.0020 0.0019 0.0018 0.0e+00 5.0e-06 1.0e-05 1.5e-05 2.0e-05 2.5e-05 3.0e-05 GRIDFAC = 1/GRIDSIZE (2/3)

  21. Case 2: CRM Nacelle-Pylon Drag Increment Angle of attack for each grid @ CL 0.50 13 3.00 CommonHybrid ALPHA CustomHexa ⎯ WB 2.90 ↕ CustomHybrid-A CustomHybrid- I 0.1 ° ⎯ 2.80 2.70 ➪ CommonHybrid 2.60 ALPHA [ ° ] ➪ CustomHexa 2.50 ➪ CustomHybrid-A 2.40 ➪ CustomHybrid-I 2.30 2.20 100M 26M 20M 8M 2.10 2.00 0.0e+00 5.0e-06 1.0e-05 1.5e-05 2.0e-05 2.5e-05 3.0e-05 GRIDFAC = 1/GRIDSIZE (2/3)

  22. Case 2: CRM Nacelle-Pylon Drag Increment Pressure distribution @ wing section 11 (Fine grid) 13 -1.40 CommonHybrid -1.20 CustomHexa CustomHybrid-A -1.00 CustomHybrid-I -0.80 -0.60 -0.40 C p -0.20 0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 x/c

  23. Case 2: CRM Nacelle-Pylon Drag Increment : : Cells : Nodes CustomHybrid-I-A (F) : Cells Side-of-body separation (SOB): 14 Nodes CustomHexa (T) : Cells : Nodes CommonHybrid (T) ≈ 20 mi ≈ 20 mi ≈ 24 mi ≈ 84 mi ≈ 20 mi ≈ 73 mi

  24. Case 3: CRM WB Static Aero-Elastic Effect Grids: SST (CFD++) Turbulence model: @ Medium level (17M nodes) CustomHybrid-I @ Medium level (17M nodes) CustomHybrid-A @ Medium level (45M nodes) CustomHexa @ Medium level (45M nodes) CommonHybrid 2.50 | 2.75 | 3.00 | 3.25 | 3.50 | 3.75 | 4.00 degrees Flow condition: = AE 2.50 | 2.75 | 3.00 | 3.25 | 3.50 | 3.75 | 4.00 degrees = AOA 5 million = Re 0.85 = M 15

  25. Case 3: CRM WB Static Aero-Elastic Effect Wing deformation effect on lift and drag polar Decreased lift slope Decreased tip incidence Increased AE (b) Drag Polar (a) Lift 16 CustomHexa 0.64 0.0410 0.60 0.0370 C L 0.56 C D AE2.50 0.0330 AE2.50 AE2.75 AE2.75 0.52 AE3.00 AE3.00 AE3.25 AE3.25 AE3.50 AE3.50 AE3.75 AE3.75 AE4.00 AE4.00 0.48 0.0290 2.50 2.75 3.00 3.25 3.50 3.75 4.00 0.56 0.60 0.64 AOA [deg] C L

  26. Case 3: CRM WB Static Aero-Elastic Effect Wing deformation effect on lift and drag polar (b) Drag Polar (a) Lift 16 CustomHexa 0.64 0.0410 0.60 0.0370 C L 0.56 C D 0.0330 0.52 AE2.50 AE2.50 AE4.00 AE4.00 AEswp AEswp 0.48 0.0290 2.50 2.75 3.00 3.25 3.50 3.75 4.00 0.56 0.60 0.64 AOA [deg] C L Increased AE → Decreased tip incidence → Decreased lift slope

  27. Case 3: CRM WB Static Aero-Elastic Effect (a) Lift (b) Drag Mesh effect on lift and drag 17 0.660 0.0440 CommonHybrid CommonHybrid CustomHexa CustomHexa CustomHybrid-A CustomHybrid-A CustomHybrid-I CustomHybrid-I 0.0400 0.600 0.0360 C D C L 0.0320 0.540 0.0280 0.480 0.0240 2.50 2.75 3.00 3.25 3.50 3.75 4.00 2.50 2.75 3.00 3.25 3.50 3.75 4.00 AE [deg] AE [deg]

  28. Case 3: CRM WB Static Aero-Elastic Effect Mesh and wing deformation effect on Cp distribution (b) Wing Section 11 - AE4.00 - AOA=4.0 o (a) Wing Section 11 - AE2.50 - AOA=2.5 o 18 -1.40 -1.40 CommonHybrid CommonHybrid -1.20 CustomHexa -1.20 CustomHexa CustomHybrid-A CustomHybrid-A -1.00 -1.00 CustomHybrid-I CustomHybrid-I -0.80 -0.80 -0.60 -0.60 -0.40 -0.40 C p -0.20 C p -0.20 0.00 0.00 0.20 0.20 0.40 0.40 0.60 0.60 0.80 0.80 1.00 1.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 x/c x/c

  29. Conclusion - Case 1 ∙ Results for CFD++ SA are similar to CFL3D and FUN3D except for a shift in total drag; ∙ The difference comes mainly from the pressure drag component; ∙ The SST turbulence model generates different results in comparison to SA; 19

  30. Conclusion - Case 2 and 3 ∙ Despite the difference in grid cells: ∙ The CustomHybrid-A is only 1 to 2 dc away from CommonHybrib (WB and WBNP); ∙ On the other hand, CustomHybrid-I generates differences in drag up to 5 dc for the same number of elements; ∙ This result highlights the importance of the way the elements are distributed; ∙ The SOB separation seems to be more related to gridding strategy than to the grid size; ∙ The grid has a significant influence on predicting CD, CL and CP for higher AE deflections; 20

Recommend


More recommend