advanced nuclear energy systems heat transfer issues and
play

Advanced Nuclear Energy Systems: Heat Transfer Issues and Trends - PowerPoint PPT Presentation

Advanced Nuclear Energy Systems: Heat Transfer Issues and Trends Michael Corradini Wisconsin Institute of Nuclear Systems Nuclear Engr. & Engr. Physics University of Wisconsin - Madison n i I s n n s o t i c t s u i W t e


  1. Advanced Nuclear Energy Systems: Heat Transfer Issues and Trends Michael Corradini Wisconsin Institute of Nuclear Systems Nuclear Engr. & Engr. Physics University of Wisconsin - Madison n i I s n n s o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  2. ENERGY SUSTAINABILITY Conditions Needed for Energy Sustainability: � Economically feasible technology � Minimal by-product streams � Acceptable land usage � “Unlimited” supply of energy resource � Neither the power source nor the technology to exploit it can be controlled by a few nations/regions Nuclear energy systems meet these conditions and can be part of the solution for future energy growth (Electricity growth estimates range 1 - 4.5%/yr) n i I s n n s o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  3. Evolution of Nuclear Power Systems Generation I Generation I Early Prototype Generation II Generation II Reactors Commercial Power Generation III Generation III Reactors Advanced Generation IV Generation IV LWRs Enhanced Enhanced • • Safety Safety More More • • economical economical Minimized Minimized • • •Shippingport Wastes Wastes •LWR: PWR/BWR •Dresden,Fermi-I Proliferation Proliferation •System 80+ •AP1000 • • •Magnox •CANDU Resistance •ABWR •ESBWR Resistance •VVER/RBMK Gen III Gen I Gen II Gen IV n i I s n n s o t i c 1960 1970 1980 1990 2000 2010 2020 2030 t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  4. Advanced Light Water Reactors: AP1000-Enhanced Passive Safety n i I s n n s o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  5. Advanced Light Water Reactors: ESBWR-Simplified Operation & Safety Natural Circulation in the Vessel Passive Safety Systems n i I s n n s o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  6. Advanced Light Water Reactors: Multiphase Heat Transfer Issues � Passive systems can simplify construction and operation but may complicate engr. analyses � Natural-circulation multiphase flow in complex geometries (plant geom. dependent) � Condensation heat transfer with non-condensible gases in reactor containment � Multiphase/multicomponent heat transfer in safety analyses beyond the ALWR design base � In-vessel lower head cooling & Ex-vessel debris coolability n i I s n n s � Multiphase/multicomponent direct-contact heat-exchange o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  7. A More Advanced LWR The next logical step in path toward simplification ? ABWR BWR/6 PWR Steam g SCWR n i I s n n s o t ESBWR i c t A boiling water reactor s u i W t …without the boiling. e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  8. SUPERCRITICAL WATER REACTOR n i I s n n s o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  9. Heat Transfer in SCW Reactor: Absence of boiling crisis (CHF), but with heat transfer degradation 1400 40000 Jackson: 1.53 Jackson: 1.34 1300 Jackson: 1.23 35000 Bishop: 1.23 Bishop: 1.34 1200 30000 Bishop: 1.53 Qlinear 1100 Linear heat generation [W/m] 25000 Temperature [K] 1000 20000 900 15000 800 10000 700 P/D 5000 600 n i I s n n s o t i c t 500 0 s u i W t 0 0.5 1 1.5 2 2.5 3 e Height of the core [m] O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  10. SCW Flow Control and Instabilities 900 110 800 100 700 90 600 80 Temperature ( o C) G (kg/m 2 s) 500 70 400 60 300 50 200 40 M ass Velocity Hot Side Tem perature 100 30 0 20 0 5 10 15 20 25 30 n i I s n n s Power (kW ) o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  11. Nuclear Fuel Recycle Advanced, Proliferation-Resistant Recycling AFCI Spent Fuel From Commercial Plants Advanced Separations Direct LWRs/ALWRs Disposal Conventional Reprocessing PUREX Gen IV Fuel Fabrication Pu Uranium Gen IV Fast Reactors Spent MO X Fuel ADS Transmuter LWRs/ALWRs Repository Repository Once Through Repository U and Pu Fuel Cycle Less U and Pu Trace U and Pu Actinides Actinides Trace Actinides Fission Products Fission Products Less Fission Products n i I s n n s European/Japanese o t Advanced Proliferation Resistant i c t Fuel Cycle s u Fuel Cycle i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  12. Liquid-Metal-Cooled Fast Reactor (e.g. LFR) Characteristics • Pb or Pb/Bi coolant • 550°C to 800°C outlet temperature • 120–400 MWe Key Benefit • Waste minimization and efficient use of uranium resources n i I s n n s o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  13. Liquid Metal-Water Direct Contact HX Steam Advantages : - Vigorous interaction between the liquid metal and the water L sup - Excellent contact so smaller volume is required to transfer the same amount of energy. L sat L - Potential replacement of IHX loop. => Need to determine the local heat L sub transfer coefficient and flow stability for a range of flow rates and regimes. Liquid Metal n i I s n n s o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  14. DCHT via Xray Imaging 0 .3 0 E x p t. P = 0 .1 M p a 0 .2 5 0 .2 0 α water 0 .1 5 0 .1 0 0 .0 5 0 .0 0 0 .0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 D is ta n c e a b o v e in je c to r z [m ] 3000 2000 HTC ( w/m 2 K ) 1000 0 n i I s n n s o t 0 2.5 5 7.5 10 12.5 15 i c t s u i W t Distance from the Injector [cm] e Void [cm] O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  15. Very-High-Temperature Reactor (VHTR) Characteristics • Helium coolant • 1000°C outlet temp. • 600 MWth • Water-cracking cycle Key Benefit • Hydrogen production by water-cracking n i I s n n s o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  16. GAS-COOLED REACTOR n i I s n n s o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  17. Process Heat for Hydrogen Production 200 C 1000 C Aqueous-phase Iodine/Sulfuric-Acid Hydrogen Carbohydrate Thermochemical Carbon Reforming (ACR) Recycle Process H2, CO2 H H ydrogen ydrogen O O xyg xyg en en H H ydrogen ydrogen O O xyg xyg en en N N ucle ucle ar H ar H e e at at N N u u clear H clear H eat eat 1 1 1 1O O O CATALYST H H 2 2 2 2 2 2 2 L 2 2 4 4 0 0 0 0 C C 9 9 0 0 0 0 C C 1 1 O O H H 2 2 2 2 2 2 H H 2 S 2 S O O R R e e je je cte cte d d + + 2H 2H I I R R ejecte ejecte d d + + 4 4 I 2 I 2 H H e e a a t 1 t 1 S S O O 2 + H 2 + H 2 O 2 O H H ea ea t 1 t 1 0 0 0 0 C C 0 0 0 0 C C AQUEOUS CARBOHYDRATE I (Io I (Io d d in in e e ) ) 2 2 H H I I + + H H 2 S 2 S O O S S (S (S ulfu ulfu r) r) 4 4 Liquid Metal C C ircu ircu latio latio n n C C ircu ircu la la tion tion I 2 I 2 + + + + S S O O 2 + H 2 + H 2 O 2 O H H 2 O 2 O S S O O CxHy 2 2 + + I 2 I 2 H H 2 O 2 O H H 2 O 2 O LM Condensed Phase n i I s n n W W ater ater s Reforming (pyrolysis) W W a a te te r r o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

  18. Micro-Nuclear Power Applications (NAE-Blanchard) Direct Conversion Micro Thermoelectric or Thermionic Generator (Electricity from radiation used to create ion-hole pair in PN Jnc) P N Self-Reciprocating Cantilever Wireless Transmitter n i I s n n s o t i c t s u i W t e O s m f e N Wisconsin Institute of Nuclear Systems MIT Rohsenow Symposium on Future Trends in Heat Transfer t u s y c l S e a r

Recommend


More recommend