ADVANCED ECONOMETRICS I Theory (2/3) Instructor: Joaquim J. S. Ramalho E.mail: jjsro@iscte-iul.pt Personal Website: http://home.iscte-iul.pt/~jjsro Office: D5.10 Course Website: https://jjsramalho.wixsite.com/advecoi Fรฉnix: https://fenix.iscte-iul.pt/disciplinas/03089
2. Nonlinear Regression Analysis 2.1. Model Estimation 2.1.1. Maximum Likelihood 2.1.2. Quasi-Maximum Likelihood Estimation 2.1.3. Generalized Method of Moments 2.2. Model Inference and Evaluation 2.3. Panel Data Models 2020/2021 Joaquim J.S. Ramalho Advanced Econometrics I 2
2. Nonlinear Regression Analysis Motivation: Often, the dependent variable is discrete and/or bounded, in which case linear regression models cannot describe it appropriately Some continuous, bounded dependent variables may be transformed in such a way that linear regression models can still be used for their analysis; but in some cases such transformations are not available 2020/2021 Joaquim J.S. Ramalho Advanced Econometrics I 3
2. Nonlinear Regression Analysis Quantities of interest: Linear models: โช ๐น ๐ ๐ Nonlinear models: โช ๐น ๐ ๐ โช If using a probabilistic model: ๐๐ ๐ ๐ โช In some models, there may be also interest on variants of the previous quantities: โ Example: when modelling a nonnegative outcome, ๐ โฅ 0 , with lots of zeros, it may be interesting to estimate also: ยป ๐๐ ๐ = 0 ๐ ยป ๐น ๐ ๐, ๐ > 0 2020/2021 Joaquim J.S. Ramalho Advanced Econometrics I 4
2. Nonlinear Regression Analysis Partial Effects: Linear models: โช Model: ๐น ๐ ๐ = ๐๐พ โช Effects: โ๐ ๐ = 1 โน โ๐น ๐ ๐ = ๐พ ๐ Nonlinear models: โช Model: โ ๐น ๐ ๐ = ๐ป ๐๐พ โ ๐๐ ๐ ๐ = ๐บ ๐๐พ โช Effects: โ๐ ๐ = 1 โน โ โ๐น ๐ ๐ = ๐๐น ๐|๐ ๐๐ป ๐๐พ ๐๐ป ๐๐พ โฒ ๐พ = = ๐พ ๐ = ๐พ ๐ ๐ ๐ฆ ๐ ๐๐ ๐ ๐๐ ๐ ๐๐๐พ ๐๐๐ ๐|๐ ๐๐บ ๐๐พ ๐๐บ ๐๐พ โฒ ๐พ โ โ๐๐ ๐ ๐ = = = ๐พ ๐ = ๐พ ๐ ๐ ๐ฆ ๐ ๐๐ ๐ ๐๐ ๐ ๐๐๐พ 2020/2021 Joaquim J.S. Ramalho Advanced Econometrics I 5
2. Nonlinear Regression Analysis Partial effects may be compared across different models, but the values of ๐พ cannot ๐๐ป ๐๐พ ๐๐บ ๐๐พ > 0 and > 0 : However, because ๐๐๐พ ๐๐๐พ โช The sign of the partial effect is given by the sign of ๐พ ๐ โช Testing the statistical significance of the partial effect is equivalent to test for ๐ผ 0 : ๐พ ๐ = 0 To calculate the magnitude of the partial effects, there are three main alternatives: โช Calculate the partial effects for each individual in the sample and then obtain the mean of those effects Stata โช Replace x by its sample means (after estimating the model) margins , dydx(๐ค๐๐ ๐๐๐ก๐ข) at (โฆ) โช Replace x by specific values margins , dydx(๐ค๐๐ ๐๐๐ก๐ข) atmeans margins , dydx(๐ค๐๐ ๐๐๐ก๐ข) 2020/2021 Joaquim J.S. Ramalho Advanced Econometrics I 6
2. Nonlinear Regression Analysis 2.1. Model Estimation Estimation: Most common estimation methods: โช Maximum Likelihood (ML): more efficient โช Quasi-Maximum Likelihood (QML): more robust In both cases it is necessary to specify: โช The ๐ป function in ๐น ๐ ๐ = ๐ป ๐๐พ โช The ๐บ function in ๐๐ ๐ ๐ = ๐บ ๐๐พ Main assumptions: โช ML: โ Correct specification of both ๐ป and ๐บ โช QML: โ Correct specification of ๐ป โ ๐บ does not need to be correctly specified but needs to belong to the linear exponential family (e.g. Normal, Bernoulli, Poisson, Exponencial, Gama, etc.) 2020/2021 Joaquim J.S. Ramalho Advanced Econometrics I 7
2. Nonlinear Regression Analysis 2.1. Model Estimation ML / QML estimation - Statistics: Distribution function - ๐บ ๐ง : gives the probability of the random variable ๐ taking a value less than or equal to ๐ง : ๐บ ๐ง = ๐๐ ๐ โค ๐ง Density function - ๐ ๐ง : โช Derivative of the distribution function: ๐ง ๐ ๐ง ๐๐ ๐๐บ ๐ง ๐ ๐ง = ๐บ ๐ง = ืฌ โโ ๐๐ง โช In the continuous case, describes the relative likelihood for the random variable ๐ being equal to ๐ง (not the absolute likelihood) โช In the discrete case gives the probability of the random variable ๐ being equal to ๐ง 2020/2021 Joaquim J.S. Ramalho Advanced Econometrics I 8
2. Nonlinear Regression Analysis 2.1. Model Estimation Likelihood function: โช In individual terms, it is the same as the density function โช Usually, it is calculated for the full sample, giving the likelihood of observing that sample under the assumption that the density function ๐ ๐ง describes appropriately the population behaviour โช Assuming independence across individuals and the same distribution for all of them, it is calculated as: ๐ ๐ ๐ง = ฯ ๐=1 ๐ ๐ง ๐ , 0 โค ๐ ๐ง โค 1 Usually: โช ๐บ ๐ง , ๐ ๐ง and ๐ ๐ง depend also on 1 or 2 parameters โช One of the parameters represents ๐น ๐ง 2020/2021 Joaquim J.S. Ramalho Advanced Econometrics I 9
2. Nonlinear Regression Analysis 2.1. Model Estimation Most popular density functions: ๐ ๐ ๐ Function 2๐๐ 2 1/2 exp โ ๐ง โ ๐ 2 1 Normal ๐, ๐ 2 ] โ โ, +โ[ 2๐ 2 โ๐ง 1 ]0, +โ[ Exponential ๐ ๐ ๐ ๐ ฮ ๐ ฮ ๐๐ ฮ 1 โ ๐ ๐ ๐ง ๐๐โ1 1 โ ๐ง 1โ๐ ๐โ1 ]0,1[ Beta ๐, ๐ ๐ ๐ง 1 โ ๐ 1โ๐ง {0,1} Bernoulli ๐ ๐ ๐ง ๐ โ๐ {0,1,2, โฆ } Poisson ๐ ๐ง! In all cases: ๐น ๐ง = ๐ 2020/2021 Joaquim J.S. Ramalho Advanced Econometrics I 10
2. Nonlinear Regression Analysis 2.1. Model Estimation Econometrics: All the analysis is conditional on a set of explanatory variables The parameter ๐ ( = ๐น ๐ง in Statistics) is replaced by the function assumed for ๐น ๐ง|๐ , for example ๐๐พ (linear regression model) It is assumed that the likelihood function is known up to the set of parameters ๐พ (and, in case the original function has 2 parameters, the other parameter) Density function to be considered: ๐ ๐ง ๐ |๐ฆ ๐ ; ๐พ 2020/2021 Joaquim J.S. Ramalho Advanced Econometrics I 11
2. Nonlinear Regression Analysis 2.1. Model Estimation Estimation: Given that: โช The density function ๐ โ is known, except for ๐พ โช The probability that the sample values were in fact generated by the chosen density ๐ โ is measured by the likelihood function Then: โช We should choose for ๐พ the value that maximizes ๐ ๐ง ๐ |๐ฆ ๐ ; ๐พ โช Optimization problem: ๐ max ๐พ ๐ ๐ง|๐; ๐พ = เท ๐ ๐ง ๐ |๐ฆ ๐ ; ๐พ ๐=1 โช Actually, it is more common to maximize ๐๐ ๐๐พ = ln ๐ ๐ง|๐; ๐พ : ๐ max ๐พ ๐๐ ๐๐พ = เท ln ๐ ๐ง ๐ |๐ฆ ๐ ; ๐พ ๐=1 โ It is easier to maximize โ It produces the same estimates for ๐พ 2020/2021 Joaquim J.S. Ramalho Advanced Econometrics I 12
2. Nonlinear Regression Analysis 2.1. Model Estimation Properties of ML / QML Estimators: Asymptotic properties of ML estimators: โช Consistency โช Efficiency โช Normality Asymptotic properties of QML estimators: โช Consistency โช Normality โช Efficiency is lost; variance calculated in a robust way โช Not possible to predict ๐๐ ๐ ๐ and associated partial effects Finite sample properties for both estimators: โช Unknown 2020/2021 Joaquim J.S. Ramalho Advanced Econometrics I 13
2. Nonlinear Regression Analysis 2.2. Model Inference and Evaluation Alternative forms for estimating parameter variances: Standard / Efficient โถ only available for ML Robust โถ only makes sense for QML Cluster-robust โถ panel data Bootstrap Classical tests: Likelihood Ratio (LR) โถ only available for ML Wald Score/LM 2020/2021 Joaquim J.S. Ramalho Advanced Econometrics I 14
2. Nonlinear Regression Analysis 2.2. Model Inference and Evaluation Test for the joint significance of a set of parameters: Competing models: โช Restricted (smaller) model, based on ๐ ๐ ๐พ 0 + ๐พ 1 ๐ฆ 1 + โฏ + ๐พ ๐ ๐ฆ ๐ โช Full (larger) model , based on ๐ ๐บ เตซ ๐พ 0 + ๐พ 1 ๐ฆ 1 + โฏ + ๐พ ๐ ๐ฆ ๐ + ๐พ ๐+1 ๐ฆ ๐+1 + โฏ + ๐พ ๐ ๐ฆ ๐ เตฏ Hypotheses: ๐ผ 0 : ๐พ ๐+1 = โฏ = ๐พ ๐ = 0 (restricted model) ๐ผ 1 : No ๐ผ 0 (full model) 2020/2021 Joaquim J.S. Ramalho Advanced Econometrics I 15
2. Nonlinear Regression Analysis 2.2. Model Inference and Evaluation LR test: Stata 2 ๐๐ = 2 ๐๐ ๐บ ๐๐พ ๐บ โ ๐๐ ๐ ๐๐พ ๐ ~๐ ๐โ๐ (estimate one model) โช Available in most econometric packages estimates store Model1 (estimate the other model) โช Easy calculation estimates store Model2 lrtest ๐๐๐๐๐1 ๐๐๐๐๐2 โช Both the competing models need to be estimated Wald test: โ1 แ โฒ Var แ ๐ = แ 2 ๐พ ๐ธ ๐พ ๐ธ ๐พ ๐ธ ~๐ ๐โ๐ where แ ๐พ ๐+1 , โฆ , แ แ ๐พ ๐ธ = ๐พ ๐ is estimated based on ๐๐ ๐บ ๐๐พ ๐บ โช When ๐ผ 0 : ๐พ ๐ = 0 , ๐ simplifies to: แ ๐พ ๐ ๐ข = ~๐ช 0,1 ๐ เทก เท ๐พ ๐ Stata (after estimating the full model) โช Available in most econometric packages test ๐ ๐+1 โฏ ๐ ๐ โช Only the full model needs to be estimated 2020/2021 Joaquim J.S. Ramalho Advanced Econometrics I 16
Recommend
More recommend