references motivation machado mata 2005 counterfactual
play

References Motivation Machado & Mata (2005). Counterfactual - PowerPoint PPT Presentation

Arthur CHARPENTIER, Advanced Econometrics Graduate Course Advanced Econometrics #4 : Quantiles and Expectiles * A. Charpentier (Universit de Rennes 1) Universit de Rennes 1, Graduate Course, 2018. 1 @freakonometrics Arthur CHARPENTIER,


  1. Arthur CHARPENTIER, Advanced Econometrics Graduate Course Advanced Econometrics #4 : Quantiles and Expectiles * A. Charpentier (Université de Rennes 1) Université de Rennes 1, Graduate Course, 2018. 1 @freakonometrics

  2. Arthur CHARPENTIER, Advanced Econometrics Graduate Course References Motivation Machado & Mata (2005). Counterfactual decomposition of changes in wage distributions using quantile regression , JAE. References Givord & d’Haultfœuillle (2013) La régression quantile en pratique , INSEE Koenker & Bassett (1978) Regression Quantiles , Econometrica. Koenker (2005). Quantile Regression . Cambridge University Press. Newey & Powell (1987) Asymmetric Least Squares Estimation and Testing , Econometrica. 2 @freakonometrics

  3. Arthur CHARPENTIER, Advanced Econometrics Graduate Course Quantiles Let Y denote a random variable with cumulative distribution function F , F ( y ) = P [ Y ≤ y ]. The quantile is � � x ∈ R , F ( x ) > u Q ( u ) = inf . 3 @freakonometrics

  4. Arthur CHARPENTIER, Advanced Econometrics Graduate Course Defining halfspace depth Given y ∈ R d , and a direction u ∈ R d , define the closed half space H y , u = { x ∈ R d such that u ′ x ≤ u ′ y } and define depth at point y by u , u � = 0 { P ( H y , u ) } depth( y ) = inf i.e. the smallest probability of a closed half space containing y . The empirical version is (see Tukey (1975) � � n � 1 1 ( X i ∈ H y , u ) depth( y ) = min n u , u � = 0 i =1 For α > 0 . 5, define the depth set as D α = { y ∈ R ∈ R d such that ≥ 1 − α } . The empirical version is can be related to the bagplot, Rousseeuw et al. , 1999 . 4 @freakonometrics

  5. Arthur CHARPENTIER, Advanced Econometrics Graduate Course Empirical sets extremely sentive to the algorithm ● ● ● ● ● ● 1.0 1.0 ● ● ● ● 0.5 0.5 ● ● ● ● ● ● 0.0 0.0 ● ● ● ● −0.5 −0.5 ● ● ● ● ● ● ● ● ● ● ● ● −1.0 −1.0 ● ● ● ● −1.5 −1.5 ● ● ● ● −2 −1 0 1 −2 −1 0 1 where the blue set is the empirical estimation for D α , α = 0 . 5. 5 @freakonometrics

  6. Arthur CHARPENTIER, Advanced Econometrics Graduate Course The bagplot tool The depth function introduced here is the multivariate extension of standard univariate depth measures, e.g. depth( x ) = min { F ( x ) , 1 − F ( x − ) } which satisfies depth( Q α ) = min { α, 1 − α } . But one can also consider � � � � 1 � � depth( x ) = 2 · F ( x ) · [1 − F ( x − )] or depth( x ) = 1 − 2 − F ( x ) � . � Possible extensions to functional bagplot. Consider a set of functions f i ( x ), i = 1 , · · · , n , such that n − 1 � f i ( x ) = µ ( x ) + z i,k ϕ k ( x ) k =1 (i.e. principal component decomposition) where ϕ k ( · ) represents the eigenfunctions. Rousseeuw et al., 1999 considered bivariate depth on the first two scores, x i = ( z i, 1 , z i, 2 ). See Ferraty & Vieu (2006) . 6 @freakonometrics

Recommend


More recommend