actor like cp systems
play

Actor-like cP Systems Alec Henderson and Radu Nicolescu - PowerPoint PPT Presentation

Greet Motiv cP cP Byz Syb Rules Bonus Actor-like cP Systems Alec Henderson and Radu Nicolescu Application/Test : Byzantine Agreement Department of Computer Science University of Auckland, Auckland, New Zealand CMC Dresden,


  1. Greet Motiv cP cP Byz Syb Rules Bonus Actor-like cP Systems Alec Henderson and Radu Nicolescu – Application/Test : Byzantine Agreement – Department of Computer Science University of Auckland, Auckland, New Zealand CMC Dresden, Germany 4-7 September 2018 1 / 34

  2. Greet Motiv cP cP Byz Syb Rules Bonus 1 Greetings 2 Motivation 3 cP Local Evolution Samples 4 cP Communication 5 The Byzantine Agreement 6 Sybil-like Attacks 7 Ruleset 8 Unbounded non-determinism – fairness, beyond Turing? 2 / 34

  3. Greet Motiv cP cP Byz Syb Rules Bonus Kia ora • Kia ora! G’day! • Good day! • Dobryj dyen’! • Guten Tag! • Bonjour! • Buon giorno! • Buenos d´ ıas! • Bun˘ a ziua! 3 / 34

  4. Greet Motiv cP cP Byz Syb Rules Bonus Basic features shared by P and cP systems • Cellular organisation • Top cells organised in digraph networks – tissue P systems • Top cells contain nested sub-cells – cell-like P systems • Data given as multisets • Evolution by multiset rewriting rules – potential parallelism • Extended with states, weak priority, promoters, inhibitors, ... • ... and communication primitives between top-cells 4 / 34

  5. Greet Motiv cP cP Byz Syb Rules Bonus Basic features shared by P and cP systems • Cellular organisation • Top cells organised in digraph networks – tissue P systems • Top cells contain nested sub-cells – cell-like P systems • Data given as multisets • Evolution by multiset rewriting rules – potential parallelism • Extended with states, weak priority, promoters, inhibitors, ... • ... and communication primitives between top-cells 4 / 34

  6. Greet Motiv cP cP Byz Syb Rules Bonus Basic features shared by P and cP systems • Cellular organisation • Top cells organised in digraph networks – tissue P systems • Top cells contain nested sub-cells – cell-like P systems • Data given as multisets • Evolution by multiset rewriting rules – potential parallelism • Extended with states, weak priority, promoters, inhibitors, ... • ... and communication primitives between top-cells 4 / 34

  7. Greet Motiv cP cP Byz Syb Rules Bonus Bird’s eye view – digraph of top level cells • Each top cell has • passive sub-cellular components (data only – no own rules!) • organelles, vesicles, ... • high-level rules (that can directly work on subcells’ contents) rules 5 / 34

  8. Greet Motiv cP cP Byz Syb Rules Bonus Inspiration • Logic programming • subcells (aka complex symbols) ≈ Prolog-like first-order terms, recursively built from multisets of atoms and variables • Functional and generic programming • Actor model 6 / 34

  9. Greet Motiv cP cP Byz Syb Rules Bonus Inspiration • Logic programming • subcells (aka complex symbols) ≈ Prolog-like first-order terms, recursively built from multisets of atoms and variables • Functional and generic programming • Actor model 6 / 34

  10. Greet Motiv cP cP Byz Syb Rules Bonus Inspiration • Logic programming • subcells (aka complex symbols) ≈ Prolog-like first-order terms, recursively built from multisets of atoms and variables • Functional and generic programming • Actor model 6 / 34

  11. Greet Motiv cP cP Byz Syb Rules Bonus Previous work – P systems with complex objects, cP • image processing and computer vision • stereo-matching, skeletonisation, segmentation • graph theory • high-level P systems programming • numerical P systems • NP-complete problems • distributed algorithms • Byzantine agreement – continued here 7 / 34

  12. Greet Motiv cP cP Byz Syb Rules Bonus cP Local Evolution Samples • Local evolution: one top cell and its subcells • No communication between top cells • Model for parallelism with shared memory 8 / 34

  13. Greet Motiv cP cP Byz Syb Rules Bonus Natural numbers Ad-hoc convention: 1 – unary digit • x = 0 ≡ x () ≡ x ( λ ) • x = 1 ≡ x ( 1 ) • x = 2 ≡ x ( 11 ) • x = n ≡ x ( 1 n ) • x ← y + z ≡ • y ( Y ) z ( Z ) → x ( YZ ) (destructive add) • → x ( YZ ) | y ( Y ) z ( Z ) (preserving add) • x ≤ y ≡ | x ( X ) y ( XY ) • x < y ≡ | x ( X ) y ( XY 1 ) 9 / 34

  14. Greet Motiv cP cP Byz Syb Rules Bonus Natural numbers Ad-hoc convention: 1 – unary digit • x = 0 ≡ x () ≡ x ( λ ) • x = 1 ≡ x ( 1 ) • x = 2 ≡ x ( 11 ) • x = n ≡ x ( 1 n ) • x ← y + z ≡ • y ( Y ) z ( Z ) → x ( YZ ) (destructive add) • → x ( YZ ) | y ( Y ) z ( Z ) (preserving add) • x ≤ y ≡ | x ( X ) y ( XY ) • x < y ≡ | x ( X ) y ( XY 1 ) 9 / 34

  15. Greet Motiv cP cP Byz Syb Rules Bonus Natural numbers Ad-hoc convention: 1 – unary digit • x = 0 ≡ x () ≡ x ( λ ) • x = 1 ≡ x ( 1 ) • x = 2 ≡ x ( 11 ) • x = n ≡ x ( 1 n ) • x ← y + z ≡ • y ( Y ) z ( Z ) → x ( YZ ) (destructive add) • → x ( YZ ) | y ( Y ) z ( Z ) (preserving add) • x ≤ y ≡ | x ( X ) y ( XY ) • x < y ≡ | x ( X ) y ( XY 1 ) 9 / 34

  16. Greet Motiv cP cP Byz Syb Rules Bonus Natural numbers Ad-hoc convention: 1 – unary digit • x = 0 ≡ x () ≡ x ( λ ) • x = 1 ≡ x ( 1 ) • x = 2 ≡ x ( 11 ) • x = n ≡ x ( 1 n ) • x ← y + z ≡ • y ( Y ) z ( Z ) → x ( YZ ) (destructive add) • → x ( YZ ) | y ( Y ) z ( Z ) (preserving add) • x ≤ y ≡ | x ( X ) y ( XY ) • x < y ≡ | x ( X ) y ( XY 1 ) 9 / 34

  17. Greet Motiv cP cP Byz Syb Rules Bonus Efficient summary statistics • Consider a multiset of ‘ a ’ numbers, such as: a ( 1 5 ) a ( 1 3 ) a ( 1 7 ) . . . • Min finding in two steps (regardless of the data cardinality) S 1 → + S ′ 1 b ( X ) | a ( X ) 1 S ′ 1 b ( XY 1 ) → + S 2 | a ( X ) 2 • Rule (2): delete all b ’s having values strictly higher than anyone a • Result (non-destructive): a ( 1 5 ) a ( 1 3 ) a ( 1 7 ) . . . b ( 1 3 ) 10 / 34

  18. Greet Motiv cP cP Byz Syb Rules Bonus Efficient summary statistics • Consider a multiset of ‘ a ’ numbers, such as: a ( 1 5 ) a ( 1 3 ) a ( 1 7 ) . . . • Min finding in two steps (regardless of the data cardinality) S 1 → + S ′ 1 b ( X ) | a ( X ) 1 S ′ 1 b ( XY 1 ) → + S 2 | a ( X ) 2 • Rule (2): delete all b ’s having values strictly higher than anyone a • Result (non-destructive): a ( 1 5 ) a ( 1 3 ) a ( 1 7 ) . . . b ( 1 3 ) 10 / 34

  19. Greet Motiv cP cP Byz Syb Rules Bonus Efficient summary statistics • Consider a multiset of ‘ a ’ numbers, such as: a ( 1 5 ) a ( 1 3 ) a ( 1 7 ) . . . • Min finding in two steps (regardless of the data cardinality) S 1 → + S ′ 1 b ( X ) | a ( X ) 1 S ′ 1 b ( XY 1 ) → + S 2 | a ( X ) 2 • Rule (2): delete all b ’s having values strictly higher than anyone a • Result (non-destructive): a ( 1 5 ) a ( 1 3 ) a ( 1 7 ) . . . b ( 1 3 ) 10 / 34

  20. Greet Motiv cP cP Byz Syb Rules Bonus Efficient summary statistics • Consider a multiset of ‘ a ’ numbers, such as: a ( 1 5 ) a ( 1 3 ) a ( 1 7 ) . . . • Min finding in two steps (regardless of the data cardinality) S 1 → + S ′ 1 b ( X ) | a ( X ) 1 S ′ 1 b ( XY 1 ) → + S 2 | a ( X ) 2 • Rule (2): delete all b ’s having values strictly higher than anyone a • Result (non-destructive): a ( 1 5 ) a ( 1 3 ) a ( 1 7 ) . . . b ( 1 3 ) 10 / 34

  21. Greet Motiv cP cP Byz Syb Rules Bonus List x – with . as cons • x ( . ( u . ( v . ( w . ())))) ≡ . • x [ u , v , w ] (sugared notation) ≡ u . • x [ u | [ v , w ]] (sugared notation) v . w . 11 / 34

  22. Greet Motiv cP cP Byz Syb Rules Bonus List – basic ops → 1 y [ ] creating empty list y a y [ Y ] → 1 y [ a | Y ] pushing atom a on list y a ( X ) y [ Y ] → 1 y [ X | Y ] pushing contents of a on list y y [ X | Y ] → 1 b ( X ) y [ Y ] popping the top of list y to contents of b 12 / 34

  23. Greet Motiv cP cP Byz Syb Rules Bonus Associative arrays (mappings, dictionaries) µ – mapping, κ – key, υ – value • 1 3 �→ c ≡ µ κ υ • µ ( κ ( 1 3 ) υ ( c )) 1 3 c • { 1 3 �→ c , 1 7 �→ g } ≡ • µ ( κ ( 1 3 ) υ ( c )) µ ( κ ( 1 7 ) υ ( g )) µ κ υ • Similarly: finite functions, relations, tables, trees, ... 1 7 g 13 / 34

  24. Greet Motiv cP cP Byz Syb Rules Bonus Associative arrays (mappings, dictionaries) µ – mapping, κ – key, υ – value • 1 3 �→ c ≡ µ κ υ • µ ( κ ( 1 3 ) υ ( c )) 1 3 c • { 1 3 �→ c , 1 7 �→ g } ≡ • µ ( κ ( 1 3 ) υ ( c )) µ ( κ ( 1 7 ) υ ( g )) µ κ υ • Similarly: finite functions, relations, tables, trees, ... 1 7 g 13 / 34

  25. Greet Motiv cP cP Byz Syb Rules Bonus Previous cP messaging mechanism • Sender takes all decisions a a → b ! 1 two a’s are deleted and one b is sent over arc 1 • More emphatically: b ! 1 ≡ ! 1 { b } • Problem: receiving cell has no control: time, filter, consistency, ... • In particular, the system is prone to Sybil attacks – i.e. can be subverted by forging identities • Name inspired by the book Sybil, a case study of a person diagnosed with dissociative (multiple) identity disorder • More generally, the network part was subsumed by local evolutions – modelling flaw 14 / 34

Recommend


More recommend