actions of compact quantum groups ii
play

Actions of Compact Quantum Groups II Examples, spectral components - PowerPoint PPT Presentation

Actions of Compact Quantum Groups II Examples, spectral components and Podle s algebra Kenny De Commer (VUB, Brussels, Belgium) Examples Coinvariants Isotypical components Algebraic actions Outline Examples of compact quantum group


  1. Actions of Compact Quantum Groups II Examples, spectral components and Podle´ s algebra Kenny De Commer (VUB, Brussels, Belgium)

  2. Examples Coinvariants Isotypical components Algebraic actions Outline Examples of compact quantum group actions The C ∗ -algebra of coinvariants for an action Isotypical components Algebraic actions

  3. Examples Coinvariants Isotypical components Algebraic actions Recall: actions on locally compact quantum spaces Definition Right action X � G : ◮ Compact quantum group G , ◮ C ∗ -algebra C 0 ( X ) , ◮ non-degenerate ∗ -homomorphism, right coaction α : C 0 ( X ) → C 0 ( X ) ⊗ C ( G ) s.t. ◮ coaction property, ( α ⊗ id G ) ◦ α = (id X ⊗ ∆) ◦ α, ◮ density: [ α ( C 0 ( X ))(1 X ⊗ C ( G ))] = C 0 ( X ) ⊗ C ( G ) .

  4. Examples Coinvariants Isotypical components Algebraic actions Actions from representations Example Let G CQG, π G -representation. Then G � B ( H π ) , Ad π : B ( H π ) → B ( H π ) ⊗ C ( G ) , ξη ∗ �→ δ π ( ξ ) δ π ( η ) ∗ = U π ( ξη ∗ ⊗ 1) U ∗ π . For G classical Hausdorff group, π representation: (Ad π ) g ( x ) = π ( g ) xπ ( g ) ∗ , x ∈ B ( H π ) .

  5. Examples Coinvariants Isotypical components Algebraic actions Universal C ∗ -envelopes Definition Let O ( X ) ∗ -algebra. Then O ( X ) admits universal C ∗ -envelope if � x � u = sup {� λ ( x ) � | λ non-degenerate ∗ -representation O ( X ) → B ( H λ ) } < ∞ . Then � �� � � C 0 ( X u ) ∼ Im O ( X ) → B ( H λ ) . = λ Remark: ◮ O ( X ) → C 0 ( X u ) not necessarily injective... ◮ C 0 ( X u ) could be zero! Examples ◮ Examples: C u ( G ) , O n , C ( S N − 1 ) , . . . + ◮ Non-example: C [ x ] , x ∗ = x .

  6. Examples Coinvariants Isotypical components Algebraic actions C ∗ -algebraic actions from algebraic actions Lemma Let O ( X ) ∗ -algebra with Hopf ∗ -algebraic coaction α : O ( X ) → O ( X ) ⊗ alg O ( G ) . Assume O ( X ) admits a universal C ∗ -envelope. Then α extends to coaction α u : C 0 ( X u ) → C 0 ( X u ) ⊗ C ( G u ) . Hopf ∗ -algebraic coaction: ◮ ( α ⊗ id) ◦ α = (id ⊗ ∆) ◦ α , ◮ (id X ⊗ ǫ ) α = id X .

  7. Examples Coinvariants Isotypical components Algebraic actions Proof ◮ Existence α u as ∗ -homomorphism: clear by universality. ◮ α u coaction: ◮ Coaction property: clear by continuity. ◮ Density: ◮ Write α ( a ) = a (0) ⊗ a (1) , (id ⊗ ∆) α ( a ) = a (0) ⊗ a (1) ⊗ a (2) , . . . ◮ Then α ( a (0) )(1 ⊗ S ( a (1) )) = a (0) ⊗ a (1) S ( a (2) ) = a (0) ⊗ ǫ ( a (1) )1 = a ⊗ 1 . ◮ Hence α ( O ( X ))(1 X ⊗ O ( G )) = O ( X ) ⊗ alg O ( G ) . ◮ Hence [ α u ( C 0 ( X u ))(1 ⊗ C ( G u ))] = C 0 ( X u ) ⊗ C ( G u ) .

  8. Examples Coinvariants Isotypical components Algebraic actions Actions from representations II Definition Let H finite dimensional Hilbert space. Cuntz C ∗ -algebra O ( H ) , ◮ H ⊆ O ( H ) linearly, ◮ ξ ∗ η = � ξ, η � , ◮ � i ξ i ξ ∗ i = 1 for { ξ i } o.n. basis. Example O n = O ( C n ) . Example Let G CQG, π G -representation. Then action G � O ( H π ) , α π : O ( H π ) → O ( H π ) ⊗ C ( G ) , ξ �→ δ π ( ξ ) .

  9. Examples Coinvariants Isotypical components Algebraic actions Liberated and free Definition (Wang) Universal C ∗ -algebra C ( O + N ) , C ∗ ( u ij | 1 ≤ i, j ≤ N, u ∗ ij = u ij and U = ( u ij ) i,j unitary ) is CQG by � ∆( u ij ) = u ik ⊗ u kj . k Example S N − 1 � O + N by + � α ( V i ) = V j ⊗ u ji . j

  10. Examples Coinvariants Isotypical components Algebraic actions Half-classical revisited Definition (Wang) Universal C ∗ -algebra C (Sym + n ) = C ( O + ( n )) / < u ij − u 2 ij > is CQG by � ∆( u ij ) = u ik ⊗ u kj . k Example Let X n = { 1 , 2 , . . . , n } . Then X n � Sym + n , � α : C ( X n ) → C ( X n ) ⊗ C (Sym + n ) , δ i �→ δ j ⊗ u ji . j

  11. Examples Coinvariants Isotypical components Algebraic actions Actions of discrete group duals Example (C ∗ -algebraic bundles and Γ -graded C ∗ -algebras) ◮ Γ discrete group. ◮ Banach spaces A g with ‘associative’ contractive multiplication A g × A h → A gh . ◮ ∗ : A g → A g − 1 antilinear, ‘involutive’, isometric. ◮ � b ∗ b � = � b � 2 for b ∈ A g , ◮ b ∗ b ≥ 0 in (the C ∗ -algebra) A e for b ∈ A g . Then � Γ � A = universal C ∗ -envelope ⊕ g A g , α : A → A ⊗ C ∗ (Γ) , a g �→ a g ⊗ λ g .

  12. Examples Coinvariants Isotypical components Algebraic actions The C ∗ -algebra of coinvariants Definition α � G . Space of orbits: Y = X / G , given by C ∗ -algebra Let X C 0 ( Y ) = { a ∈ C 0 ( X ) | α ( a ) = a ⊗ 1 G } . Examples α ◮ G � C 0 ( X ) C 0 ( Y ) = C 0 ( X ) G = { a ∈ C 0 ( X ) | α g ( a ) = a for all g ∈ G } . α ◮ X � G : C 0 ( X ) G = { G -constant continuous functions on X } ∼ { continuous functions on X/G } . =

  13. Examples Coinvariants Isotypical components Algebraic actions Intertwiners and fixed point subalgebras Definition (Space of intertwiners) Let π 1 and π 2 G -representations. Then Mor( π 1 , π 2 ) = { T : H 1 → H 2 | δ 2 ◦ T = ( T ⊗ id) ◦ δ 1 } ⊆ B ( H 1 , H 2 ) . Lemma ◮ T ∈ Mor( π 1 , π 2 ) , T ′ ∈ Mor( π 2 , π 3 ) ⇒ T ′ ◦ T ∈ Mor( π 1 , π 3 ) . ◮ T ∈ Mor( π 1 , π 2 ) ⇒ T ∗ ∈ Mor( π 2 , π 1 ) . Example B ( H π ) α π = Mor( π, π ) , α π ( ξη ∗ ) = δ π ( ξ ) δ π ( η ) ∗ = U π ( ξη ∗ ⊗ 1) U ∗ π .

  14. Examples Coinvariants Isotypical components Algebraic actions Commuting actions Definition β α Let X � G and H � X . Commutation of α and β : ( β ⊗ id G ) α = (id G ⊗ α ) β. Example β α Assume X � G and H � X commute. Then H � X / G , β | C ( X / G ) : C ( X / G ) → C ( H ) ⊗ C ( X / G ) .

  15. Examples Coinvariants Isotypical components Algebraic actions Invariant functionals on CQG Theorem (Woronowicz) G compact quantum group. ∃ ! state ϕ on C ( G ) , Haar state, s.t. (id ⊗ ϕ )∆( f ) = ( ϕ ⊗ id)∆( f ) = ϕ ( f )1 G , ∀ f ∈ C ( G ) . For G compact Hausdorff group, µ Haar (probability) measure , � ϕ ( f ) = f ( g )d µ ( g ) . G Lemma ϕ faithful on O ( G ) : ϕ ( h ∗ h ) = 0 ∀ h ∈ O ( G ) , ⇒ h = 0 . In fact: if h ∈ O ( G ) positive in C ( G ) and ϕ ( h ) = 0 , then h = 0 .

  16. Examples Coinvariants Isotypical components Algebraic actions Conditional expectation Lemma (Integration over fibers) α � G , Y = X / G . Conditional expectation onto C 0 ( Y ) X E Y : C 0 ( X ) → C 0 ( X ) , a �→ (id ⊗ ϕ ) α ( a ) , ◮ range C 0 ( Y ) , ◮ idempotent, ◮ completely positive, ◮ bimodular: E Y ( bac ) = bE Y ( a ) c, a ∈ C 0 ( X ) , b, c ∈ C 0 ( Y ) , ◮ non-degenerate: [ C 0 ( X ) C 0 ( Y )] = C 0 ( X ) . Non-degeneracy: ‘Every point of X is in an orbit (point of Y )’.

  17. Examples Coinvariants Isotypical components Algebraic actions Examples Examples α ◮ G � C 0 ( X ) � E Y ( a ) = α g ( a )d µ ( g ) . G α ◮ X � G : integration over orbits, � E Y ( f )( xG ) = f ( xg )d µ ( g ) . G Example S 1 � O n : � S 1 z N − M ( V i 1 . . . V i N V ∗ E Y ( V i 1 . . . V i N V ∗ j 1 . . . V ∗ j 1 . . . V ∗ j M ) = j M )d z δ M,N V i 1 . . . V i N V ∗ j 1 . . . V ∗ = j N .

  18. Examples Coinvariants Isotypical components Algebraic actions Proof (of properties E Y ) ◮ Range ⊆ C 0 ( Y ) : � � α ( E Y ( a )) = α (id ⊗ ϕ ) α ( a ) = (id ⊗ id ⊗ ϕ )(( α ⊗ id) α ( a )) = (id ⊗ id ⊗ ϕ )((id ⊗ ∆) α ( a )) = (id ⊗ ϕ )( α ( a )) ⊗ 1 G = E Y ( a ) ⊗ 1 G . ◮ Trivially, E Y ( b ) = b for b ∈ C 0 ( Y ) . ◮ Trivially, E Y completely positive (state + ∗ -homs c.p.). ◮ Trivially, E Y C 0 ( Y ) -bimodular. ◮ Non-degenerate: u α bounded approximate unit C 0 ( X ) , ∀ b ∈ C 0 ( X ) , E Y ( u α ) b = (id ⊗ ϕ )( α ( u α )( b ⊗ 1)) → b, since b ⊗ 1 ∈ [ α ( C 0 ( X ))(1 ⊗ C ( G ))] .

  19. Examples Coinvariants Isotypical components Algebraic actions Results on G -representations Definition ◮ π indecomposable: π ≇ π 1 ⊕ π 2 . ◮ π irreducible: T ∈ Mor( π ′ , π ) , T ∗ T = id ⇒ TT ∗ = id or 0 . Proposition Let G compact quantum group. ◮ G -representation indecomposable ⇔ irreducible. ◮ G -representation ∼ = direct sum irreducibles.

  20. Examples Coinvariants Isotypical components Algebraic actions Isotypical components Definition α X � G , π G -representation. Intertwiner space Mor( π, α ) : Mor( π, α ) = { T : H π → C 0 ( X ) | α ( Tξ ) = ( T ⊗ id) δ π ( ξ ) } . π irreducible: π -isotypical component (or π -spectral subspace) C 0 ( X ) π = { Tξ | ξ ∈ H π , T ∈ Mor( π, α ) } ⊆ C 0 ( X ) . Note: Each C 0 ( X ) π is C 0 ( Y ) -bimodule.

  21. Examples Coinvariants Isotypical components Algebraic actions The Podle´ s subalgebra Theorem (Podle´ s) α � G . Then ∗ -algebra (unital if X compact) Let X O G ( X ) = linear span { C 0 ( X ) π | π irreducible } ⊆ C 0 ( X ) . Definition O G ( X ) Podle´ s subalgebra of C 0 ( X ) .

Recommend


More recommend