accessing the real part of the forward compton elastic j
play

Accessing the real part of the forward Compton & elastic J/psi - PowerPoint PPT Presentation

Accessing the real part of the forward Compton & elastic J/psi scattering amplitudes off the proton Oleksii Gryniuk, Marc Vanderhaeghen JGU, Mainz, Germany Summer School 2016 September 22, 2016 Outline Accessing the real part of the


  1. Accessing the real part of the forward Compton & elastic J/psi scattering amplitudes off the proton Oleksii Gryniuk, Marc Vanderhaeghen JGU, Mainz, Germany Summer School 2016 September 22, 2016

  2. Outline • Accessing the real part of the forward Compton scattering amplitude off the proton • Accessing the real part of the forward elastic J/psi - p scattering amplitude • Summary

  3. Forward Compton scattering off the proton ɣ ɣ p p

  4. Forward Compton scattering off the proton T γ p ( ν ) ɣ ɣ spin-averaged amplitude: ≡ ν = W 2 − M 2 p p pq p kinematic variable: M p 2 M p

  5. Forward Compton scattering off the proton T γ p ( ν ) ɣ ɣ spin-averaged amplitude: ≡ ν = W 2 − M 2 p p pq p kinematic variable: M p 2 M p Im T γ p ( ν ) = ν 4 π σ tot γ p ( ν ) unitarity

  6. Forward Compton scattering off the proton T γ p ( ν ) ɣ ɣ spin-averaged amplitude: ≡ ν = W 2 − M 2 p p pq p kinematic variable: M p 2 M p Im T γ p ( ν ) = ν 4 π σ tot γ p ( ν ) unitarity causality + crossing + low energy theorem subtracted dispersion relation: Z 1 σ tot γ p ( ν 0 ) + ν 2 Re T γ p ( ν ) = − α ν 0 2 − ν 2 d ν 0 2 π 2 M p 0

  7. Forward Compton scattering off the proton — motivation resonance region higher energies… 600 200 fit I Block - Halzen [PRD70, 091901(R) (2004)] saturated fit II Donnachie - Landshof [PLB595, 393 (2004)] Froissart bound Armstrong et al . Armstrong et al . 500 180 MacCormick et al . Caldwell et al . (~ log 2 𝜉 ) LEGS Collaboration H1 Collaboration Bartalini et al . ZEUS Collaboration 400 160 σ tot σ abs [ µ b ] σ [ µ b] 300 140 Regge with 200 120 hard pomeron (~ 𝜉 0.45 ) 100 100 10 1 10 2 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 ν [ GeV ] W [GeV]

  8. Forward Compton scattering off the proton — motivation resonance region higher energies… 600 200 fit I Block - Halzen [PRD70, 091901(R) (2004)] saturated fit II Donnachie - Landshof [PLB595, 393 (2004)] Froissart bound Armstrong et al . Armstrong et al . 500 180 MacCormick et al . Caldwell et al . (~ log 2 𝜉 ) LEGS Collaboration H1 Collaboration Bartalini et al . ZEUS Collaboration 400 160 σ tot σ abs [ µ b ] σ [ µ b] 300 140 Regge with 200 120 hard pomeron (~ 𝜉 0.45 ) 100 100 10 1 10 2 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 DR ν [ GeV ] W [GeV] 10 5 Damashek-Gilman Block - Halzen Armstrong et al . Donnachie - Landshof 5 A2 Collaboration Alvensleben et al . fit I 0 fit II 0 Alvensleben et al . -3.03 Re f [ µ b · GeV ] Re f [ µ b · GeV ] ReT -5 -5 -10 -10 -12.3 -15 -15 -20 0.0 0.5 1.0 1.5 2.0 2.5 2 4 6 8 10 12 ν [ GeV ] W [GeV] OG, F. Hagelstein, V. Pascalutsa, a single existing direct experimental datapoint (1972) PRD 92 , 074031 (2015)

  9. Forward Compton scattering off the proton — motivation resonance region higher energies… 600 200 fit I Block - Halzen [PRD70, 091901(R) (2004)] saturated fit II Donnachie - Landshof [PLB595, 393 (2004)] Froissart bound Armstrong et al . Armstrong et al . 500 180 MacCormick et al . Caldwell et al . (~ log 2 𝜉 ) LEGS Collaboration H1 Collaboration Bartalini et al . ZEUS Collaboration 400 160 σ tot σ abs [ µ b ] σ [ µ b] 300 140 Regge with 200 120 hard pomeron (~ 𝜉 0.45 ) 100 100 10 1 10 2 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 DR ν [ GeV ] W [GeV] 10 5 Damashek-Gilman Block - Halzen Armstrong et al . Donnachie - Landshof 5 A2 Collaboration Alvensleben et al . fit I 0 fit II 0 Alvensleben et al . -3.03 Re f [ µ b · GeV ] Re f [ µ b · GeV ] ReT -5 -5 -10 -10 -12.3 -15 -15 -20 0.0 0.5 1.0 1.5 2.0 2.5 2 4 6 8 10 12 ν [ GeV ] W [GeV] OG, F. Hagelstein, V. Pascalutsa, a single existing direct experimental datapoint (1972) PRD 92 , 074031 (2015) Let’s redo the experiment at JLab!

  10. Lepton pair photoproduction dominant l − l + q q l − q q' l + l + l − T µ ν q' q' p p p' p' p p' Bethe-Heitler Compton

  11. Lepton pair photoproduction q 0 2 6 = 0 quasi-real dominant l − l + q q l − q q' l + l + l − T µ ν q' q' p p p' p' p p' t 6 = 0 quasi-forward Bethe-Heitler q 0 2 → 0 quasi-forward-real Compton contribution: t → 0 ✓ � g µ ν + q 0 µ q ν ◆ T µ ν T 1 ' unpoll qq 0 ✓ ◆ ✓ ◆ P µ − qP P ν − qP 1 qq 0 q 0 µ qq 0 q ν T 2 + M 2 P = 1 ν = qP ν , t, q 0 2 ) ' T FRCS T 1 ( e ( e ν ) 2( p + p 0 ) e 1 M ν , t, q 0 2 ) ' � qq 0 qq 0 = q 0 2 − t ν 2 T FRCS T 2 ( e ( e ν ) 1 e 2

  12. Lepton pair photoproduction q 0 2 6 = 0 quasi-real dominant l − l + q q l − q q' l + l + l − T µ ν q' q' p p p' p' p p' t 6 = 0 quasi-forward Bethe-Heitler 10 2 2 d Ω e-e+ cm ( µ b/GeV 4 sr) E γ = 2.2 GeV q 0 2 → 0 quasi-forward-real Compton contribution: -t = 0.027 GeV 2 2 = 0.0006 GeV 2 M ll t → 0 ✓ � g µ ν + q 0 µ q ν ◆ T µ ν T 1 ' unpoll qq 0 ✓ ◆ ✓ ◆ P µ − qP P ν − qP 1 d σ /dt dM ll 10 qq 0 q 0 µ Full qq 0 q ν T 2 + M 2 P = 1 ν = qP ν , t, q 0 2 ) ' T FRCS T 1 ( e ( e ν ) 2( p + p 0 ) e 1 M ν , t, q 0 2 ) ' � qq 0 Bethe-Heitler qq 0 = q 0 2 − t ν 2 T FRCS T 2 ( e ( e ν ) 1 e 2 1 -150 -100 -50 0 50 100 150 θ e-e+ cm (deg)

  13. Interference term l + ↔ l − Bethe-Heitler Compton l − l + ↔ l − : l + ↔ l − : q l − q q' odd l + even l + T µ ν q' p p p' p'

  14. Interference term l + ↔ l − Bethe-Heitler Compton l − l + ↔ l − : l + ↔ l − : q l − q q' odd l + even l + T µ ν q' p p p' p' Observable: | T CS + T BH | 2 = | T CS | 2 + 2 Re T CS T BH + | T BH | 2 even even odd

  15. Forward-backward asymmetry interference d Ω ( θ cm ) − d σ d σ d Ω ( θ cm − π ) 2 Re T CS T BH d Ω ( θ cm − π ) = A FB ≡ | T CS | 2 + | T BH | 2 d Ω ( θ cm ) + d σ d σ θ cm — scattering angle in a lepton pair CM frame A FB A FB 0.05 0.05 Data: DESY (1972) E γ = 2.2 GeV -t = 0.027 GeV 2 0.025 0 Born M ll = 0.025 GeV -0 -0.05 -0.025 -0.1 Full -0.05 -0.15 Born -0.075 -0.2 E γ = 2.2 GeV -0.1 -0.25 Full -t = 0.027 GeV 2 -0.125 -0.3 50 o < θ e-e+ cm < 150 o -0.15 -0.35 0 20 40 60 80 100 120 140 160 180 0 0.01 0.02 0.03 0.04 0.05 θ e-e+ cm (deg) M ll (GeV)

  16. Future experiments at JLab HPS (Heavy Photon Search) ep → ep ( e − e + ) E12 - 11 - 006 initial process of interest: beam energies: 1.1, 2.2, 4.4, 6.6 GeV − e M ll : 0.01 — 0.1 GeV A' Z some preliminary results: background — of our interest: − e Z

  17. Forward J/psi - p scattering J/psi J/psi p p

  18. Forward J/psi - p scattering — motivation e − c γ J/ Ψ c e + P’ P probe of the colour deconfinement at high energies through the • propagation of a J/Psi in a quark-gluon plasma D. Kharzeev and H. Satz, Phys. Lett. B 334 , 155 (1994) D. Kharzeev, H. Satz, A. Syamtomov and G. Zinovjev, Eur. Phys. J. C 9 , 459 (1999) is there a J/psi - nucleus bound state? • T ψ p ( ν = ν el ) = 8 π ( M + M ψ ) a ψ p J/psi - p s-wave scattering length J/psi binding energy in a nuclear matter (linear density approximation): B ψ ' 8 π ( M + M ψ ) a ψ p ρ nm 4 MM ψ M. E. Luke, A. V. Manohar and M. J. Savage, Phys. Lett. B 288 , 355 (1992) S. H. Lee and C. M. Ko, Phys. Rev. C 67 , 038202 (2003) … S. J. Brodsky and G. A. Miller, Phys. Lett. B 412 , 125 (1997) K. Tsushima, D. H. Lu, G. Krein and A. W. Thomas, Phys. Rev. C 83 , 065208 (2011)

  19. Forward J/psi - p scattering T ψ p ( ν ) J/psi J/psi spin-averaged amplitude: p p ν ≡ p q = s − u kinematic variable: 4

  20. Forward J/psi - p scattering T ψ p ( ν ) J/psi J/psi spin-averaged amplitude: p p ν ≡ p q = s − u kinematic variable: 4 Im T ψ p ( ν ) = 2 √ s q ψ p σ tot ψ p ( ν ) unitarity causality + crossing subtracted dispersion relation: Z 1 Re T ψ p ( ν ) = T ψ p (0) + 2 d ν 0 1 Im T ψ p ( ν 0 ) π ν 2 ν 0 2 − ν 2 ν 0 ν el directly sensitive to a ψ p

  21. Forward J/psi - p scattering T ψ p ( ν ) J/psi J/psi spin-averaged amplitude: p p ν ≡ p q = s − u kinematic variable: 4 Im T ψ p ( ν ) = 2 √ s q ψ p σ tot ψ p ( ν ) unitarity parameterising cross section: causality + crossing σ tot ψ p = σ el ψ p + σ inel ψ p ⌘ b el ✓ ν ◆ a el subtracted dispersion relation: ⇣ 1 − ν el σ el ψ p ∝ C el ν ν el Z 1 Re T ψ p ( ν ) = T ψ p (0) + 2 d ν 0 1 Im T ψ p ( ν 0 ) ⌘ b in ✓ ν π ν 2 ◆ a in ⇣ 1 − ν in σ inel ν 0 2 − ν 2 ∝ C in ν 0 ψ p ν el ν ν in directly sensitive to a ψ p

  22. Forward J/psi - p scattering K. Redlich, H. Satz and G. M. Zinovjev, Eur. Phys. J. C 17 , 461 (2000) Vector meson dominance (VMD) assumption: V. D. Barger and R. J. N. Phillips, Phys. Lett. B 58 , 433 (1975) ◆ 2 ✓ q γ p ◆ 2 ✓ M ψ forward differential cross section: σ el ψ p = σ ( γ p → ψ p ) ef ψ q ψ p ◆ 2 d σ ◆ 2 ✓ q ψ p � � ✓ ef ψ d σ � � ( γ p → ψ p ) = ( ψ p → ψ p ) ◆ 2 ✓ q γ p � � ◆ 2 ✓ M ψ dt M ψ q γ p dt � � t =0 t =0 σ inel = σ ( γ p → c ¯ cX ) ψ p ef ψ q ψ p

Recommend


More recommend