A Tight Lower Bound for Entropy Flattening Yi-Hsiu Chen 1 os 1 Salil Vadhan 1 Jiapeng Zhang 2 Mika G¨ o¨ 1 Harvard University, USA 2 UC San Diego, USA June 23, 2018 1 / 18
Agenda 1 Problem Definition / Model 2 Cryptographic Motivations 3 Proof Techniques 2 / 18
Flatness Definition (Entropies) Let X be a distribution over { 0 , 1 } n . Define the surprise of x to be H X ( x ) = log(1 / Pr [ X = x ]) . H sh ( X ) def = x ∼ X [ H X ( x )] , E H min ( X ) def = min x H X ( x ) , H max ( X ) def = log | Supp X | ≤ max H X ( x ) . x H min ( X ) ≤ H sh ( x ) ≤ H max ( X ) (The gap can be Θ( n ) .) A source X is flat iff H sh ( X ) = H min ( X ) = H max ( X ) . 3 / 18
Entropy Flattening Flattening Algorithm A Input source X Output source Y nearly flat ( H sh ( Y ) ≈ H min ( Y ) ≈ H max ( Y ) ) 4 / 18
Entropy Flattening Flattening Algorithm A Input source X Output source Y nearly flat ( H sh ( Y ) ≈ H min ( Y ) ≈ H max ( Y ) ) Entropies of the output and input sources are monotonically related. 4 / 18
Entropy Flattening Flattening Algorithm A Input source X Output source Y nearly flat ( H sh ( Y ) ≈ H min ( Y ) ≈ H max ( Y ) ) Entropies of the output and input sources are monotonically related. max max min flattening min/max Shannon gap sh � gap max sh min min X L X H Y L Y H 4 / 18
Entropy Flattening Entropy Flattening Problem Find an flattening algorithm A : If H sh ( X ) ≥ τ + 1 , then H ε min ( Y ) ≥ k + ∆ . If H sh ( X ) ≤ τ − 1 , then H ε max ( Y ) ≤ k − ∆ . 5 / 18
Entropy Flattening Entropy Flattening Problem Find an flattening algorithm A : If H sh ( X ) ≥ τ + 1 , then H ε min ( Y ) ≥ k + ∆ . If H sh ( X ) ≤ τ − 1 , then H ε max ( Y ) ≤ k − ∆ . Smooth Entropies min ( Y ) ≥ k if ∃ Y ′ s.t. H min ( Y ) ≥ k and d TV ( Y, Y ′ ) ≤ ε . H ε max ( Y ) ≤ k if ∃ Y ′ s.t. H max ( Y ) ≤ k and d TV ( Y, Y ′ ) ≤ ε . H ε 5 / 18
Solution: Repetition Theorem ([HILL99, HR11]) X : a distribution over { 0 , 1 } n . Let Y = ( X 1 , . . . , X q ) where X i s are i.i.d. copies of X . � � � H ε min ( Y ) , H ε max ( Y ) ∈ H sh ( Y ) ± O n q log(1 /ε ) � � � �� log(1 /ε ) q · H sh ( X ) ± O n q (Asymptotic Equipartition Property (AEP) in information theory) 6 / 18
Solution: Repetition Theorem ([HILL99, HR11]) X : a distribution over { 0 , 1 } n . Let Y = ( X 1 , . . . , X q ) where X i s are i.i.d. copies of X . � � � H ε min ( Y ) , H ε max ( Y ) ∈ H sh ( Y ) ± O n q log(1 /ε ) � � � �� log(1 /ε ) q · H sh ( X ) ± O n q (Asymptotic Equipartition Property (AEP) in information theory) q = O ( n 2 ) is sufficient for the constant entropy gap. q = Ω( n 2 ) is needed due to anti-concentration results. [HR11] 6 / 18
Query Model The Model: Input source : encoded by a function f : { 0 , 1 } n → { 0 , 1 } m and defined as f ( U n ) . Flattening algorithm : oracle algorithm A f : { 0 , 1 } n ′ → { 0 , 1 } m ′ has query access to f . Output source : A f ( U n ′ ) . Example : A f ( r 1 , . . . , r q ) = ( f ( r 1 ) , . . . , f ( r q )) 7 / 18
Query Model The Model: Input source : encoded by a function f : { 0 , 1 } n → { 0 , 1 } m and defined as f ( U n ) . Flattening algorithm : oracle algorithm A f : { 0 , 1 } n ′ → { 0 , 1 } m ′ has query access to f . Output source : A f ( U n ′ ) . Example : A f ( r 1 , . . . , r q ) = ( f ( r 1 ) , . . . , f ( r q )) Def: Flattening Algorithm � ≥ τ + 1 � ≥ k + ∆ � f ( U n ) � A f ( U n ′ ) H ε H sh ⇒ min � ≤ τ − 1 � ≤ k − ∆ � f ( U n ) � A f ( U n ′ ) H ε H sh ⇒ max 7 / 18
Query Model The Model: Input source : encoded by a function f : { 0 , 1 } n → { 0 , 1 } m and defined as f ( U n ) . Flattening algorithm : oracle algorithm A f : { 0 , 1 } n ′ → { 0 , 1 } m ′ has query access to f . Output source : A f ( U n ′ ) . Example : A f ( r 1 , . . . , r q ) = ( f ( r 1 ) , . . . , f ( r q )) Def: Flattening Algorithm � ≥ τ + 1 � ≥ k + ∆ � f ( U n ) � A f ( U n ′ ) H ε H sh ⇒ min � ≤ τ − 1 � ≤ k − ∆ � f ( U n ) � A f ( U n ′ ) H ε H sh ⇒ max More powerful: Querying correlated positions or even in an adaptive way. Computation on the query inputs. e.g., hashing 7 / 18
Main Theorems Theorem Flattening algorithms for n -bit oracles f require Ω( n 2 ) oracle queries. 8 / 18
Main Theorems Theorem Flattening algorithms for n -bit oracles f require Ω( n 2 ) oracle queries. Def: SDU Algorithm � ≥ τ + 1 � A f ( U n ′ ) , U m ′ � < ε . � f ( U n ) H sh ⇒ d TV � ≤ τ − 1 � / 2 m ′ ≤ ε . � f ( U n ) � A f ( U n ′ ) H sh ⇒ Supp Flattening Algorithm ⇐ ⇒ SDU Algorithm (Reduction between two NISZK-complete problems [GSV99]) Theorem SDU algorithms for n -bit oracles f require Ω( n 2 ) oracle queries. 8 / 18
Connection to Cryptographic Constructions Example : OWF f → PRG g f ([HILL90, Hol06, HHR06, HRV10, VZ13]): 1 Create a gap between “pseudoentropy” and (true) entropy. 2 Guess the entropy threshold τ (or other tricks). 3 Flatten entropies. 4 Extract the pseudorandomness (via universal hashing). 9 / 18
Connection to Cryptographic Constructions Example : OWF f → PRG g f ([HILL90, Hol06, HHR06, HRV10, VZ13]): 1 Create a gap between “pseudoentropy” and (true) entropy. 2 Guess the entropy threshold τ (or other tricks). ˜ O ( n ) queries 3 Flatten entropies. ˜ O ( n 2 ) queries 4 Extract the pseudorandomness (via universal hashing). Overall, the best PRG makes ˜ O ( n 3 ) queries to the one-way function [HRV10, VZ13]. From regular one-way function, Step 3 is unnecessary, and so ˜ O ( n ) query is sufficient. [HHR06] 9 / 18
Connection to Cryptographic Constructions Example : OWF f → PRG g f ([HILL90, Hol06, HHR06, HRV10, VZ13]): 1 Create a gap between “pseudoentropy” and (true) entropy. 2 Guess the entropy threshold τ (or other tricks). ˜ O ( n ) queries 3 Flatten entropies. ˜ O ( n 2 ) queries 4 Extract the pseudorandomness (via universal hashing). Overall, the best PRG makes ˜ O ( n 3 ) queries to the one-way function [HRV10, VZ13]. From regular one-way function, Step 3 is unnecessary, and so ˜ O ( n ) query is sufficient. [HHR06] Holenstein and Sinha ([HS12]) prove that any black-box construction requires ˜ Ω( n ) queries. (From Step 2. Applicable to regular OWF) 9 / 18
Connection to Cryptographic Constructions Example : OWF f → PRG g f ([HILL90, Hol06, HHR06, HRV10, VZ13]): 1 Create a gap between “pseudoentropy” and (true) entropy. 2 Guess the entropy threshold τ (or other tricks). ˜ O ( n ) queries 3 Flatten entropies. ˜ O ( n 2 ) queries 4 Extract the pseudorandomness (via universal hashing). Overall, the best PRG makes ˜ O ( n 3 ) queries to the one-way function [HRV10, VZ13]. From regular one-way function, Step 3 is unnecessary, and so ˜ O ( n ) query is sufficient. [HHR06] Holenstein and Sinha ([HS12]) prove that any black-box construction requires ˜ Ω( n ) queries. (From Step 2. Applicable to regular OWF) Can we do better in the entropy flattening step? 9 / 18
Overview of the Proof Def: SDU Algorithm � ≥ τ + 1 � A f ( U n ′ ) , U m ′ � < ε . � f ( U n ) H sh ⇒ d TV � ≤ τ − 1 � / 2 m ′ ≤ ε . � f ( U n ) � A f ( U n ′ ) H sh ⇒ Supp 1 Construct distributions D H and D L : Sample f from D H , then H sh ( f ( U n )) ≥ τ + 1 w.h.p. Sample f from D L , then H sh ( f ( U n )) ≤ τ − 1 w.h.p. 2 A cannot “behave very different” on both distributions by making only q = o ( n 2 ) queries. 10 / 18
Construction of f Partition the domain into s blocks, each with t elements ( s · t = 2 n ) Concentrated: map to the same element. Scattered: map to all distinct elements. 2 3 n/ 4 blocks f � �� � . . . { 0 , 1 } n Sca Sca Con Sca Con Sca � �� � 2 n/ 4 elements ↓ { 0 , 1 } m 11 / 18
Construction of f Partition the domain into s blocks, each with t elements ( s · t = 2 n ) Concentrated: map to the same element. Scattered: map to all distinct elements. 2 3 n/ 4 blocks f � �� � . . . { 0 , 1 } n Sca Sca Con Sca Con Sca � �� � 2 n/ 4 elements ↓ { 0 , 1 } m ≥ s · (1 / 2 + 4 /n ) blocks are scattered ⇒ H sh ( f ) ≥ 7 n/ 8 + 1 ≤ s · (1 / 2 − 4 /n ) blocks are scattered ⇒ H sh ( f ) ≤ 7 n/ 8 − 1 11 / 18
D H and D L 2 3 n/ 4 blocks f � �� � . . . { 0 , 1 } n Sca Sca Con Sca Con Sca � �� � 2 n/ 4 elements ↓ { 0 , 1 } m 1 Randomly partition { 0 , 1 } n into 2 3 n/ 4 blocks. 12 / 18
D H and D L 2 3 n/ 4 blocks f � �� � . . . { 0 , 1 } n Sca Sca Con Sca Con Sca � �� � 2 n/ 4 elements ↓ { 0 , 1 } m 1 Randomly partition { 0 , 1 } n into 2 3 n/ 4 blocks. 2 Decide each block to be scattered or concentrated. D H : scattered with probability (1 / 2 + 5 /n ) , then w.h.p, ≥ s · (1 / 2 + 4 /n ) blocks are scattered D L : scattered with probability (1 / 2 − 5 /n ) , then w.h.p, ≤ s · (1 / 2 − 4 /n ) blocks are scattered 12 / 18
Recommend
More recommend