a review of numerical relativity and black hole collisions
play

A review of numerical relativity and black-hole collisions U. - PowerPoint PPT Presentation

A review of numerical relativity and black-hole collisions U. Sperhake DAMTP , University of Cambridge Mons Meeting 2013: General Relativity and beyond 18 th July 2013 U. Sperhake (DAMTP, University of Cambridge) A review of numerical


  1. The projections of the Riemann tensor ⊥ µα ⊥ νβ ⊥ γρ ⊥ σδ R ρσµν = R γδαβ + K γα K δβ − K γβ K δα Gauss Eq. ⊥ µα ⊥ νβ R µν + ⊥ µα ⊥ νβ n ρ n σ R µρνσ = R αβ + KK αβ − K µβ K αµ contracted R + 2 R µν n µ n ν = R + K 2 − K µν K µν scalar Gauss eq. ⊥ γρ n σ ⊥ µα ⊥ νβ R ρσµν = D β K γα − D α K γβ Codazzi eq. n σ ⊥ νβ R σν = D β K − D µ K µβ contracted ⊥ αµ ⊥ νβ n σ n ρ R µρνσ = 1 α L m K αβ + K αµ K µβ + 1 α D α D β α ⊥ µα ⊥ νβ R µν = − 1 α L m K αβ − 2 K αµ K µβ − 1 α D α D β α + R αβ + KK αβ α γ µν D µ D ν α + R + K 2 + K µν K µν R = − 2 α L m K − 2 Here L is the Lie derivative and m µ = α n µ = ( ∂ t ) µ + β µ Summation of spatial tensors: ignore time indices; µ, ν, . . . → m , n , . . . U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 23 / 159

  2. Decomposition of the Einstein equations R αβ − 1 2 Rg αβ + Λ g αβ = 8 π T αβ � � 1 2 ⇔ R αβ = 8 π T αβ − D − 2 g αβ T + D − 2 Λ g αβ Energy momentum tensor ρ = T µν n µ n ν energy density j α = − T µν n µ ⊥ να momentum density S αβ = ⊥ µα ⊥ νβ T µν , S = γ µν S µν stress tensor T αβ = S αβ + n α j β + n β j α + ρ n α n β , T = S − ρ Lie derivative L m = L ( ∂ t − β ) L m K ij = ∂ t K ij − β m ∂ m K ij − K mj ∂ i β m − K im ∂ j β m L m γ ij = ∂ t γ ij − β m ∂ m γ ij − γ mj ∂ i β m − γ im ∂ j β m U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 24 / 159

  3. Decomposition of the Einstein equations Definition: L m γ ij = − 2 α K ij ⊥ µα ⊥ νβ projection: � � S − ρ L m K ij = − D i D j α + α ( R ij + KK ij − 2 K im K mj )+ 8 πα 2 D − 2 γ ij − S ij − D − 2 Λ γ ij Evolution equations n µ n ν projection R + K 2 − K mn K mn = 2 Λ + 16 πρ Hamiltonian constraint ⊥ µα n ν projection D i K − D m K mi = − 8 π j i Momentum constraint U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 25 / 159

  4. Well-posedness Consider a field φ evolved with a first-order system of PDEs The system has a well posed initial value formulation ⇔ There exists some norm and a smooth function F : R + × R + → R + such that || φ ( t ) || ≤ F ( || φ ( 0 ) || , t ) || φ ( 0 ) || Well-posed systems have unique solutions for given initial data There can still be fast growth, e.g. exponential Strong hyperbolicity is necessary for well-posedness The general ADM equations are only weakly hyperbolic Details depend on: gauge, constraints, discretization Sarbach & Tiglio, Living Reviews Relativity 15 (2012) 9; Gundlach & Martín-García, PRD 74 (2006) 024016; Reula, gr-qc/0403007 U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 26 / 159

  5. The BSSN system Goal: modify ADM to get a strongly hyperbolic system Baumgarte & Shapiro, PRD 59 (1998) 024007, Shibata & Nakamura, PRD 52 (1995) 5428 Conformal decomposition, trace split, auxiliary variable 1 K = γ ij K ij φ = 4 ( D − 1 ) ln γ, γ ij = e 4 φ γ ij γ ij = e − 4 φ ˜ ⇔ ˜ A ij = e − 4 φ � � K ij = e 4 φ � � ˜ 1 ˜ 1 K ij − ⇔ D − 1 γ ij K A ij + D − 1 ˜ γ ij K Γ i = ˜ ˜ γ mn ˜ Γ i mn Auxiliary constraints γ mn ˜ γ = det ˜ ˜ γ ij = 1 , ˜ A mn = 0 U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 27 / 159

  6. The BSSN equations 2 ( D − 1 ) ( ∂ m β m − α K ) ∂ t φ = β m ∂ m φ − 1 γ m ( i ∂ i ) β m − γ ij ∂ m β m − 2 α ˜ γ = β m ∂ m ˜ 2 ∂ t ˜ γ ij + 2 ˜ D − 1 ˜ A ij γ mn D m D n α + α ˜ A mn ˜ ∂ t K = β m ∂ m K − e 4 φ ˜ D − 1 α K 2 1 A mn + + 8 π 2 D − 2 α [ S + ( D − 3 ) ρ ] − D − 2 α Λ A m ( i ∂ i ) β m − A ij ∂ m β m + α K ˜ ∂ t ˜ A ij = β m ∂ m ˜ A ij + 2 ˜ D − 1 ˜ A ij − 2 α ˜ A im ˜ 2 A mj � TF + e − 4 φ � α R ij − D i D j α − 8 πα S ij Γ i = β m ∂ m ˜ Γ i + Γ i ∂ m β m + ˜ γ mn ∂ m ∂ n β i + D − 3 ∂ t ˜ D − 1 ˜ 2 γ im ∂ m ∂ n β n D − 1 ˜ + 2 ˜ A im [ 2 ( D − 1 ) α∂ m φ − ∂ m α ]+ 2 α ˜ mn ˜ Γ i A mn − 2 D − 2 γ im ∂ m K − 16 πα j i D − 1 α ˜ Note: There are alternative versions using χ = e − 4 φ or W = e − 2 φ U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 28 / 159

  7. The BSSN equations In the BSSN equations we use jk = ˜ Γ i Γ i jk + 2 ( δ ik ∂ j φ + δ ij ∂ k φ − ˜ γ im ∂ m φ ) γ jk ˜ R ij = ˜ R ij + R φ ij γ mn ˜ R φ ij = 2 ( 3 − D )˜ D i ˜ D m ˜ γ mn ∂ m φ ∂ n φ ) D j φ − 2 ˜ γ ij ˜ D n φ + 4 ( D − 3 )( ∂ i φ ∂ j φ − ˜ γ ij ˜ Γ m + ˜ R ij = − 1 ˜ γ m ( i ∂ j ) ˜ Γ m ˜ γ mn [ 2 ˜ m ( i ˜ Γ j ) kn + ˜ im ˜ γ mn ∂ m ∂ n ˜ Γ k Γ k 2 ˜ γ ij + ˜ Γ ( ij ) m + ˜ Γ kjn ] D i D j α = ˜ D i ˜ γ mn ∂ m φ ∂ n α D j α − 2 ( ∂ i φ ∂ j α + ∂ j φ ∂ i α ) + 2 ˜ γ ij ˜ The constraints are D − 1 K 2 − ˜ A mn ˜ H = R + D − 2 A mn − 16 πρ − 2 Λ = 0 M i = ˜ D m ˜ D − 1 ∂ i K + 2 ( D − 1 )˜ A mi − D − 2 A mi ∂ m φ − 8 π j i = 0 U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 29 / 159

  8. 2.1.2 Generalized Harmonic formulation U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 30 / 159

  9. The Generalized Harmonic (GH) formulation → Appendix U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 31 / 159

  10. 2.1.3 Characteristic formulation U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 32 / 159

  11. The characteristic formulation → Appendix U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 33 / 159

  12. Direct methods Use symmetry to write line element, e.g. ds 2 = − a 2 ( µ, t ) dt 2 + b 2 ( µ, t ) d µ 2 − R 2 ( µ, t ) d Ω 2 May & White, PR 141 (1966) 1232 Energy momentum tensor T 00 = − ρ ( 1 + ǫ ) , T 11 = T 22 = T 3 3 = 0 Lagrangian coords. GRT ENSOR , M ATHEMATICA ,... ⇒ Field equations: a ′ = ... b ′ = ... ¨ R = ... U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 34 / 159

  13. Numerical relativity in D > 4 dimensions Needed for many applications: TeV gravity, AdS/CFT, BH stability Reduction to a “3+1” problem Diagnostics: Wave extraction, horizons → Talk H.Witek U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 35 / 159

  14. Further reading 3+1 formalism Gourgoulhon, gr-qc/0703035 Characteristic formalism Winicour, Liv. Rev. Rel. 15 2012 2 Numerical relativity in general Alcubierre, “ Introduction to 3+1 Numerical Relativity ”, Oxford University Press Baumgarte & Shapiro, “ Numerical Relativity ”, Cambridge University Press Well-posedness, Einstein eqs. as an Initial-Boundary-Value problem Sarbach & Tiglio, Liv. Rev. Rel. 15 (2012) 9 U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 36 / 159

  15. 2.2. Initial data, Gauge, Boundaries U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 37 / 159

  16. 2.2.1. Initial data U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 38 / 159

  17. Analytic initial data Schwarzschild, Kerr, Tangherlini, Myers Perry,... e.g. Schwarzschild in isotropic coordinates: [ r 2 + r 2 ( d θ 2 + sin 2 θ d φ 2 )] ds 2 = − M − 2 r M + 2 r dt 2 + 1 + M � � 2 r Time symmetric N BH initial data: Brill-Lindquist, Misner 1960s Problem: Finding initial data for dynamic systems Goals 1) Solve constraints 2) Realistic snapshot of physical system This is mostly done using the ADM 3+1 split U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 39 / 159

  18. The York-Lichnerowicz split We work in D = 4 Conformal metric: γ ij = ψ 4 ¯ γ ij Lichnerowicz, J.Math.Pures Appl. 23 (1944) 37 York, PRL 26 (1971) 1656, PRL 28 (1972) 1082 Note: in contrast to BSSN we do not set ¯ γ = 1 Conformal traceless split of the extrinsic curvature K ij = A ij + 1 3 γ ij K A ij = ψ − 10 ¯ A ij = ψ − 2 ¯ ⇔ A ij A ij U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 40 / 159

  19. Bowen-York data By further splitting ¯ A ij into a longitudinal and a transverse traceless part, the momentum constraint simplifies significantly Cook, Living Review Relativity (2000) 05 Further assumptions: vacuum, K = 0, γ ij = f ij , ¯ ψ | ∞ = 1 where f ij is the flat metric in arbitrary coordinates. Conformal flatness, asymptotic flatness, traceless Then there exists an anlytic solution to the momentum constraint ¯ 3 P i n j + P j n i − ( f ij − n i n j ) P k n k � � A ij = 2 r 2 + 3 � ǫ kil S l n k n j + ǫ kjl S l n k n i � r 3 where r is a coordinate radius and n i = x i r Bowen & York, PRD 21 (1980) 2047 U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 41 / 159

  20. Properties of the Bowen York solution The momentum in an asymptotically flat hypersurface associated with the asymptotic translational and rotational Killing vectors ξ i ( a ) is Π i = 1 K ji − δ ji K ξ i ( a ) d 2 A j � � � 8 π ∞ ⇒ . . . ⇒ P i and S i are the physical linear and angular momentum of the spacetime The momentum constraint is linear ⇒ we can superpose Bowen-York data. The momenta then simply add up Bowen-York data generalizes (analytically!) to higher D Yoshino, Shiromizu & Shibata, PRD 74 (2006) 124022 U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 42 / 159

  21. Puncture data Brandt & Brügmann, PRL 78 (1997) 3606 The Hamiltonian constraint is now given by A mn = 0 ¯ 8 ψ − 7 ¯ A mn ¯ ∇ 2 ψ + 1 Ansatz for conformal factor: ψ = ψ BL + u , where ψ BL = � N m i r i | is the Brill-Lindquist conformal factor, i = 1 2 | � r − � i.e. the solution for ¯ A ij = 0. There then exist unique C 2 solutions u to the Hamiltonian constraints The Hamiltonian constraint in this form is further suitable for numerical solution e.g. Ansorg, Brügmann & Tichy, PRD 70 (2004) 064011 U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 43 / 159

  22. Properties of the puncture solutions r i are bare mass and position of the i th BH. m i and � In the limit of vanishing Bowen York parameters P i = S i = 0, the puncture solution reduces to Brill Lindquist data � 4 � γ ij dx i dx j = ( dx 2 + dy 2 + dz 2 ) m i 1 + � i 2 | � r − � r i | The numerical solution of the Hamiltonian constraint generalizes rather straightforwardly to higher D Yoshino, Shiromizu & Shibata, PRD 74 (2006) 124022 Zilhão et al, PRD 84 (2011) 084039 Punctures generalize to asymptotically de-Sitter BHs Zilhão et al, PRD 85 (2012) 104039 using McVittie coordinates McVittie, MNRAS 93 (1933) 325 U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 44 / 159

  23. 2.2.2. Gauge U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 45 / 159

  24. The gauge freedom β i Remember: Einstein equations say nothing about α, Any choice of lapse and shift gives a solution This represents the coordinate freedom of GR β i Physics do not depend on α, So why bother? The performance of the numerics DO depend strongly on the gauge! U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 46 / 159

  25. What goes wrong with bad gauge? U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 47 / 159

  26. What goes wrong with bad gauge? U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 48 / 159

  27. What goes wrong with bad gauge? U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 49 / 159

  28. What goes wrong with bad gauge? U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 50 / 159

  29. Ingredients for good gauge Singularity avoidance Avoid slice stretching Aim at stationarity in comoving frame Well posedness of system Generalize “good” gauge, e .g. harmonic Lots of good luck! Bona et al, PRL 75 (1995) 600, Alcubierre et al. , PRD 67 (2003) 084023, Alcubierre, CQG 20 (2003) 607, Garfinkle, PRD 65 (2001) 044029 U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 51 / 159

  30. Moving puncture gauge Gauge was a key ingredient in the Moving puncture breakthroughs Campanelli et al, PRL 96 (2006) 111101 Baker et al, PRL 96 (2006) 111102 Variant of 1 + log slicing and Γ -driver shift Alcubierre et al, PRD 67 (2003) 084023 Now in use as ∂ t α = β m ∂ m α − 2 α K and ∂ t β i = β m ∂ m β i + 3 4 B i ∂ t B i = β m ∂ m B i + ∂ t ˜ Γ i − β m ∂ m ˜ Γ i − η B i or ∂ t β i = β m ∂ m β i + 3 Γ i − ηβ i 4 ˜ U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 52 / 159

  31. Moving puncture gauge continued Some people drop the advection derivatives β m ∂ m . . . η is a damping parameter or position-dependent function Alic et al, CQG 27 (2010) 245023, Schnetter, CQG 27 (2010) 167001, Müller et al, PRD 82 (2010) 064004 Modifications in higher D : Dimensional reduction Zilhão et al, PRD 81 (2010) 084052 ∂ t α = β m ∂ m α − 2 α ( η K K + η K ζ K ζ ) C ARTOON Yoshino & Shibata, PTPS 189 (2011) 269 ∂ t β i = 2 ( D − 2 ) v 2 D − 1 long B i ∂ t B i = ∂ t ˜ Γ i − η B i Here η K , η K ζ , v long are parameters U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 53 / 159

  32. 2.2.3. Boundaries U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 54 / 159

  33. Inner boundary: Singularity treatment Cosmic censorship ⇒ horizon protects outside We get away with it... Moving Punctures UTB, NASA Goddard ’05 Excision: Cut out region around singularity Caltech-Cornell, Pretorius U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 55 / 159

  34. Moving puncture slices: Schwarzschild Wormhole → Trumpet slice = stationary 1+log slice Hannam et al, PRL 99 (2007) 241102, PRD 78 (2008) 064020 Brown, PRD 77 (2008) 044018, CQG 25 (2008) 205004 Gauge might propagate at > c , no pathologies Natural excision Brown, PRD 80 (2009) 084042 U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 56 / 159

  35. Outer boundary → Appendix U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 57 / 159

  36. Further reading Initial data construction Cook, Liv. Rev. Rel. 3 (2000) 5 Pfeiffer, gr-qc/0510016 U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 58 / 159

  37. 2.3 Discretization of the equations U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 59 / 159

  38. Finite differencing Consider one spatial, one time dimension t , x Replace computational domain by discrete points x i = x 0 + i dx , t n = t 0 + n dt Function values f ( t n , x i ) ∼ f n , i U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 60 / 159

  39. Derivatives and finite derivatives Goal: represent ∂ m f ∂ x m in terms of f n , i Fix index n ; Taylor expansion: i dx 2 + O ( dx 3 ) f i − 1 = f i − f ′ i dx + 1 2 f ′′ f i = f i i dx 2 + O ( dx 3 ) f i + 1 = f i + f ′ i dx + 1 2 f ′′ Write f ′ i as linear combination: f ′ i = Af i − 1 + Bf i + Cf i + 1 Insert Taylor expressions and compare coefficients on both sides 2 Adx 2 + 1 0 = 1 2 Cdx 2 ⇒ 0 = A + B + C , 1 = ( − A + B ) dx , ⇒ A = − 1 1 2 dx , B = 0 , C = 2 dx i = f i + 1 − f i − 1 ⇒ f ′ + O ( dx 2 ) 2 dx Higher order accuracy → more points; works same in time U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 61 / 159

  40. Mesh refinement ∼ 1 M 3 Length scales : BH Wavelength ∼ 10 ... 100 M ∼ 100 ... 1000 M Wave zone Critical phenomena Choptuik ’93 First used for BBHs Brügmann ’96 Available Packages: Paramesh MacNeice et al. ’00 Carpet Schnetter et al. ’03 SAMRAI MacNeice et al. ’00 U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 62 / 159

  41. Berger-Oliger mesh refinement Goal: Update from t to t + dt Refinement criteria: numerical error, curvature,... Here for 1 + 1 dimensions U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 63 / 159

  42. Berger-Oliger mesh refinement Goal: Update from t to t + dt Refinement criteria: numerical error, curvature,... Here for 1 + 1 dimensions U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 64 / 159

  43. Berger-Oliger mesh refinement Goal: Update from t to t + dt Refinement criteria: numerical error, curvature,... Here for 1 + 1 dimensions U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 65 / 159

  44. Berger-Oliger mesh refinement Goal: Update from t to t + dt Refinement criteria: numerical error, curvature,... Here for 1 + 1 dimensions U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 66 / 159

  45. Berger-Oliger mesh refinement Goal: Update from t to t + dt Refinement criteria: numerical error, curvature,... Here for 1 + 1 dimensions U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 67 / 159

  46. Berger-Oliger mesh refinement Goal: Update from t to t + dt Refinement criteria: numerical error, curvature,... Here for 1 + 1 dimensions U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 68 / 159

  47. Berger-Oliger mesh refinement Goal: Update from t to t + dt Refinement criteria: numerical error, curvature,... Here for 1 + 1 dimensions U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 69 / 159

  48. Alternative discretization schemes Spectral methods: high accuracy, efficiency, complexity Caltech-Cornell-CITA code SpEC http://www.black-holes.org/SpEC.html Applications to moving punctures still in construction e.g. Tichy, PRD 80 (2009) 104034 Also used in symmetric asymptotically AdS spacetimes e.g. Chesler & Yaffe, PRL 106 (2011) 021601 Finite Volume methods Finite Element methods D. N. Arnold, A. Mukherjee & L. Pouly, gr-qc/9709038 C. F. Sopuerta, P . Sun & J. Xu, CQG 23 (2006) 251 C. F. Sopuerta & P . Laguna, PRD 73 (2006) 044028 U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 70 / 159

  49. Further reading Numerical methods Press et al, “ Numerical Recipes ”, Cambridge University Press U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 71 / 159

  50. 3 Results from BH evolutions U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 72 / 159

  51. 3.1 BHs in GW physics U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 73 / 159

  52. Gravitational waves Weak field limit: g αβ = η αβ + h αβ Trace reversed perturbation ¯ h αβ = h αβ − 1 2 h η αβ ⇒ Vacuum field eqs.: � ¯ h αβ = 0 Apropriate gauge ⇒   0 0 0 0 0 h + h × 0  e ik σ x σ ¯   h αβ =   0 h × − h + 0  0 0 0 0 where k σ = null vector GWs displace particles U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 74 / 159

  53. Gravitational wave detectors Accelerated masses ⇒ GWs Weak interaction! Laser interferometric detectors U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 75 / 159

  54. The gravitational wave spectrum U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 76 / 159

  55. Some targets of GW physics Confirmation of GR Hulse & Taylor 1993 Nobel Prize Parameter determination of BHs: M , � S Optical counter parts Standard sirens (candles) Mass of graviton Test Kerr Nature of BHs Cosmological sources Neutron stars: EOS U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 77 / 159

  56. Free parameters of BH binaries Total mass M Relevant for GW detection: Frequencies scale with M Not relevant for source modeling: trivial rescaling Mass ratio q ≡ M 1 M 1 M 2 η ≡ M 2 , ( M 1 + M 2 ) 2 Spin: � S 1 , � S 2 (6 parameters) Initial parameters Binding energy E b Separation Orbital ang. momentum L Eccentricity Alternatively: frequency, eccentricity U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 78 / 159

  57. BBH trajectory and waveform q = 4, non-spinning binary; ∼ 11 orbits US, Brügmann, Müller & Sopuerta ’11 Trajectory Quadrupole mode U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 79 / 159

  58. Morphology of a BBH inspiral Thanks to Caltech, Cornell, CITA U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 80 / 159

  59. Matched filtering BH binaries have 7 parameters: 1 mass ratio, 2 × 3 for spins Sample parameter space, generate waveform for each point NR + PN Effective one body Ninja, NRAR Projects GEO 600 noise chirp signal U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 81 / 159

  60. Template construction Stitch together PN and NR waveforms EOB or phenomenological templates for ≥ 7-dim. par. space U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 82 / 159

  61. Template construction Phenomenological waveform models Model phase, amplitude with simple functions → Model parameters Create map between physical and model parameters Time or frequency domain Ajith et al, CQG 24 (2007) S689, PRD 77 (2008) 104017, CQG 25 (2008) 114033, PRL 106 (2011) 241101; Santamaria et al, PRD 82 (2010) 064016, Sturani et al, arXiv:1012.5172 [gr-qc] Effective-one-body (EOB) models Particle in effective metric, PN, ringdown model Buonanno & Damour PRD 59 (1999) 084006, PRD 62 (2000) 064015 Resum PN, calibrate pseudo PN parameters using NR Buonanno et al, PRD 77 (2008) 026004, Pan et al, PRD 81 (2010) 084041, PRD 84 (2012) 124052; Damour et al, PRD 77 (2008) 084017, PRD 78 (2008) 044039, PRD 83 (2011) 024006 U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 83 / 159

  62. Going beyond GR: Scalar-tensor theory of gravity Brans-Dicke theory: 1 parameter ω BD ; well constrained Bergmann-Wagoner theories: Generalize ω = ω ( φ ) No-hair theorem: BHs solutions same as in GR e.g. Hawking, Comm.Math.Phys. 25 (1972) 167 Sotiriou & Faraoni, PRL 108 (2012) 081103 Circumvent no-hair theorem: Scalar bubble Healey et al, arXiv:1112.3928 [gr-qc] Circumvent no-hair theorem: Scalar gradient Berti et al, arXiv:1304.2836 [gr-qc] U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 84 / 159

  63. 3.2. High-energy collisions of BHs U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 85 / 159

  64. The Hierarchy Problem of Physics Gravity ≈ 10 − 39 × other forces µ 2 − Λ 2 � Higgs field ≈ µ obs ≈ 250 GeV = where Λ ≈ 10 16 GeV is the grand unification energy Requires enormous finetuning!!! Finetuning exist: 987654321 123456789 = 8 . 0000000729 Or E Planck much lower? Gravity strong at small r ? ⇒ BH formation in high-energy collisions at LHC Gravity not measured below 0 . 16 mm ! Diluted due to... Large extra dimensions Arkani-Hamed, Dimopoulos & Dvali ’98 Extra dimension with warp factor Randall & Sundrum ’99 U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 86 / 159

  65. Stages of BH formation Matter does not matter at energies well above the Planck scale ⇒ Model particle collisions by black-hole collisions Banks & Fischler, gr-qc/9906038; Giddings & Thomas, PRD 65 (2002) 056010 U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 87 / 159

  66. Does matter “matter”? Hoop conjecture ⇒ kinetic energy triggers BH formation Einstein plus minimally coupled, massive, complex scalar filed “Boson stars” Pretorius & Choptuik, PRL 104 (2010) 111101 γ = 1 γ = 4 BH formation threshold: γ thr = 2 . 9 ± 10 % ∼ 1 / 3 γ hoop Model particle collisions by BH collisions U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 88 / 159

  67. Does matter “matter”? Perfect fluid “stars” model γ = 8 . . . 12; BH formation below Hoop prediction East & Pretorius, PRL 110 (2013) 101101 Gravitational focussing ⇒ Formation of individual horizons Type-I critical behaviour Extrapolation by 60 orders would imply no BH formation at LHC Rezzolla & Tanaki, CQG 30 (2013) 012001 U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 89 / 159

  68. Experimental signature at the LHC Black hole formation at the LHC could be detected by the properties of the jets resulting from Hawking radiation. BlackMax , Charybdis Multiplicity of partons: Number of jets and leptons Large transverse energy Black-hole mass and spin are important for this! ToDo: Exact cross section for BH formation Determine loss of energy in gravitational waves Determine spin of merged black hole U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 90 / 159

  69. D = 4: Initial setup: 1) Aligned spins Orbital hang-up Campanelli et al, PRD 74 (2006) 041501 2 BHs: Total rest mass: M 0 = M A , 0 + M B , 0 √ 1 − v 2 , Boost: γ = 1 / M = γ M 0 Impact parameter: b ≡ L P U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 91 / 159

  70. D = 4: Initial setup: 2) No spins Orbital hang-up Campanelli et al, PRD 74 (2006) 041501 2 BHs: Total rest mass: M 0 = M A , 0 + M B , 0 √ 1 − v 2 , Boost: γ = 1 / M = γ M 0 Impact parameter: b ≡ L P U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 92 / 159

  71. D = 4: Initial setup: 3) Anti-aligned spins Orbital hang-up Campanelli et al, PRD 74 (2006) 041501 2 BHs: Total rest mass: M 0 = M A , 0 + M B , 0 √ 1 − v 2 , Boost: γ = 1 / M = γ M 0 Impact parameter: b ≡ L P U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 93 / 159

  72. � D = 4: Head-on: b = 0 , S = 0 Total radiated energy: 14 ± 3 % for v → 1 US et al, PRL 101 (2008) 161101 About half of Penrose ’74 Agreement with approximative methods Flat spectrum, GW multipoles Berti et al, PRD 83 (2011) 084018 U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 94 / 159

  73. � D = 4: Grazing: b � = 0 , S = 0 , γ = 1 . 52 Radiated energy up to at least 35 % M Immediate vs. Delayed vs. No merger US et al, PRL 103 (2009) 131102 U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 95 / 159

  74. D = 4: Scattering threshold b scat for � S = 0 ⇒ b < b scat Merger b > b scat ⇒ Scattering b scat = 2 . 5 ± 0 . 05 Numerical study: M v Shibata et al, PRD 78 (2008) 101501(R) Independent study US et al, PRL 103 (2009) 131102, arXiv:1211.6114 γ = 1 . 23 . . . 2 . 93: χ = − 0 . 6 , 0 , + 0 . 6 (anti-aligned, nonspinning, aligned) Limit from Penrose construction: b crit = 1 . 685 M Yoshino & Rychkov, PRD 74 (2006) 124022 U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 96 / 159

  75. D = 4: Scattering threshold and radiated energy � S � = 0 US et al, arXiv:1211.6114 At speeds v � 0 . 9 spin effects washed out E rad always below � 50 % M U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 97 / 159

  76. D = 4: Absorption For large γ : E kin ≈ M If E kin is not radiated, where does it go? Answer: ∼ 50 % into E rad , ∼ 50 % is absorbed US et al, arXiv:1211.6114 U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 98 / 159

  77. 3.3 Fundamental properties of BHs U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 99 / 159

  78. Stability of AdS m = 0 scalar field in as. flat spacetimes Choptuik, PRL 70 (1993) 9 p > p ∗ ⇒ BH, p < p ∗ ⇒ flat m = 0 scalar field in as. AdS Bizo´ n & Rostworowski, PRL 107 (2011) 031102 Similar behaviour for “Geons” Dias, Horowitz & Santos ’11 D > 4 dimensions Jałmu˙ zna et al, PRD 84 (2011) 085021 D = 3: Mass gap: smooth solutions Bizo´ n & Jałmu˙ zna, arXiv:1306.0317 U. Sperhake (DAMTP, University of Cambridge) A review of numerical relativity and black-hole collisions 07/18/2013 100 / 159

Recommend


More recommend