a recursive partitioning algorithm for space information
play

A Recursive Partitioning Algorithm for Space Information Flow - PowerPoint PPT Presentation

A Recursive Partitioning Algorithm for Space Information Flow Jiaqing Huang , Zongpeng Li Huazhong University of Science and Technology(HUST), Wuhan, P.R.China Department of Computer Science, University of Calgary, Canada


  1. A Recursive Partitioning Algorithm for Space Information Flow Jiaqing Huang ∗ , Zongpeng Li † ∗ Huazhong University of Science and Technology(HUST), Wuhan, P.R.China † Department of Computer Science, University of Calgary, Canada Globecom’14 Dec 9 th , 2014 in Austin, Texas, USA ∗ Email: jqhuang@mail.hust.edu.cn

  2. Motivation Formulation Algorithm, Simulations Conclusion Outline 1 Motivation 2 Formulation 3 New Algorithm of SIF & Simulations Algorithm Simulations and Discussions 4 conclusion Presenter: Jiaqing Huang EIE, HUST “A Recursive Partitioning Algorithm for SIF”, Globecom’14 PPT

  3. Motivation Formulation Algorithm, Simulations Conclusion Motivation: Space Information Flow (SIF) What is SIF? Information Flow : Network Coding Space: geometric Space, e.g. Euclidean space SIF: network coding in space What is new? (2011) SIF (2011) allows introducing additional relay nodes to reduce cost NIF (2000) not. why study SIF? Network Coding in space is strictly better than routing in space e.g. Pentagram example Presenter: Jiaqing Huang EIE, HUST “A Recursive Partitioning Algorithm for SIF”, Globecom’14 PPT

  4. Motivation Formulation Algorithm, Simulations Conclusion Why SIF (Network Coding in Space)? Pentagram example Consider Min-cost Multicast in 2-D Euclidean Space Objective: min total length under requirement of same throughput A B E F C D Figure: 6 terminal nodes: F → { A,B,C,D,E } Presenter: Jiaqing Huang EIE, HUST “A Recursive Partitioning Algorithm for SIF”, Globecom’14 PPT

  5. Motivation Formulation Algorithm, Simulations Conclusion Why SIF (Network Coding in Space)? Pentagram example Using Routing in Space A A 1 B B E E 2 F F 3 C D C D Figure: ESMT is optimal routing in space, using 3 Steiner nodes Presenter: Jiaqing Huang EIE, HUST “A Recursive Partitioning Algorithm for SIF”, Globecom’14 PPT

  6. Motivation Formulation Algorithm, Simulations Conclusion Why SIF (Network Coding in Space)? Pentagram example Using Network Coding in Space (Space Information Flow) A a a + b 1 5 a a + b a + b B E a b b F b b 2 4 a 3 b b a a C D Figure: Pentagram: using 5 relay nodes Presenter: Jiaqing Huang EIE, HUST “A Recursive Partitioning Algorithm for SIF”, Globecom’14 PPT

  7. Motivation Formulation Algorithm, Simulations Conclusion Why SIF? Network Coding in space is strictly better than optimal routing in space Single Multicast Example: Pentagram A A A a a + b 1 1 5 a a + b B a + b E B E B E 2 a b b F F F b b 2 4 a 3 3 b b a a C D C D C D (c) (b) (a) Radius = 1 SIF = 9.14/2 = 4.57 ESMT=4.64 Figure: (a) 6 terminal nodes in space (b) optimal ESMT (c) SIF cost of network coding = 4 . 64 Cost of routing Cost advantage= 4 . 57 ≈ 1 . 015 > 1 Presenter: Jiaqing Huang EIE, HUST “A Recursive Partitioning Algorithm for SIF”, Globecom’14 PPT

  8. Motivation Formulation Algorithm, Simulations Conclusion SIF vs. NIF Multicast example: Butterfly network Routing Network Coding in Graph in Graph (NIF) Coding Advantage Since 2000 Complexity Multicast example: Pentagram network Routing Network Coding in Space in Space (SIF) Cost Advantage Since 2011 Complexity Figure: Space Information Flow (SIF) [1][2][3][4][5] Butterfly NC > routing in Graph Network Information Flow Pentagram NC > routing in Space Space Information Flow Presenter: Jiaqing Huang EIE, HUST “A Recursive Partitioning Algorithm for SIF”, Globecom’14 PPT

  9. Motivation Formulation Algorithm, Simulations Conclusion Related Work Network Coding in Space (SIF) Algorithm ( Objective ): uniform partitioning heuristic [5], but has drawback (next page ...) Properties of SIF: Convex Hull, Convexity, Wedge [6], ... Routing in Space: ESMT(Euclidean Steiner Minimal Tree) Algorithms Exact algorithms [7] 1 Approximation algorithms (e.g. PTAS [8], partitioning) 2 Heuristic algorithms [9] 3 Properties of ESMT [10]: FST, Wedge, Diamond, ... Complexity: ESMT is NP-Hard [9] Presenter: Jiaqing Huang EIE, HUST “A Recursive Partitioning Algorithm for SIF”, Globecom’14 PPT

  10. Motivation Formulation Algorithm, Simulations Conclusion Related Work Drawback of Previous SIF algorithm that uses uniform partitioning Terminals have non-uniform density distribution, algorithm convergence slows down e.g. clustered terminals Figure: Issue of uniform partitioning Presenter: Jiaqing Huang EIE, HUST “A Recursive Partitioning Algorithm for SIF”, Globecom’14 PPT

  11. Motivation Formulation Algorithm, Simulations Conclusion Outline 1 Motivation 2 Formulation 3 New Algorithm of SIF & Simulations Algorithm Simulations and Discussions 4 conclusion Presenter: Jiaqing Huang EIE, HUST “A Recursive Partitioning Algorithm for SIF”, Globecom’14 PPT

  12. Motivation Formulation Algorithm, Simulations Conclusion Formulation Formulation Given terminal nodes in space + extra relay nodes Single Multicast Minimize cost= � e w ( e ) f ( e ) w ( e ): Euclidean distance, i.e. | e | f ( e ): flow rate SIF includes two aspects: Topology : connection + flow rate on each link f ( uv )) Positions : positions of relay nodes Presenter: Jiaqing Huang EIE, HUST “A Recursive Partitioning Algorithm for SIF”, Globecom’14 PPT

  13. Motivation Formulation Algorithm Algorithm, Simulations Simulations Conclusion Outline 1 Motivation 2 Formulation 3 New Algorithm of SIF & Simulations Algorithm Simulations and Discussions 4 conclusion Presenter: Jiaqing Huang EIE, HUST “A Recursive Partitioning Algorithm for SIF”, Globecom’14 PPT

  14. Motivation Formulation Algorithm Algorithm, Simulations Simulations Conclusion New Heuristic Algorithm SIF algorithm includes two phases: Phase I: Approach optimal SIF topology Non-uniform partitioning Linear Programming Phase II: Approach optimal SIF positions of relays Analytic geometry method Equilibrium method Presenter: Jiaqing Huang EIE, HUST “A Recursive Partitioning Algorithm for SIF”, Globecom’14 PPT

  15. Motivation Formulation Algorithm Algorithm, Simulations Simulations Conclusion New Heuristic Algorithm: Phase I Figure: Non-uniform Partitioning: Through every terminal node, a vertical line and a horizontal line are drawn to obtain a bounding box and a number of sub-rectangles; every sub-rectangle is partitioned into q × q (e.g. q=2) cells. The centers of the cells inside the convex hull (in red) determined by given terminal nodes are taken as the candidate relay nodes . Presenter: Jiaqing Huang EIE, HUST “A Recursive Partitioning Algorithm for SIF”, Globecom’14 PPT

  16. Motivation Formulation Algorithm Algorithm, Simulations Simulations Conclusion New Heuristic Algorithm: Phase I P 8 P P > > > < Phase I: Non-uniform Phase I: Procedures > > > : Partitioning + LP Non-uniform Partitioning sub-rectangle q × q, q=2 Construct complete graph Apply LP uv ∈ A w ( − → uv ) f ( − → Minimize cost q = uv ) → − Subject to : v ∈ V ↑ ( u ) f i ( − → v ∈ V ↓ ( u ) f i ( − → vu ) = uv ) f i ( − → T i S ) = r f i ( − → uv ) ≤ f ( − → uv ) f ( − → uv ) ≥ 0 , f i ( − → uv ) ≥ 0 Figure: Clustering network N=9 Presenter: Jiaqing Huang EIE, HUST “A Recursive Partitioning Algorithm for SIF”, Globecom’14 PPT

  17. Motivation Formulation Algorithm Algorithm, Simulations Simulations Conclusion New Heuristic Algorithm: Phase II 8 q q > > > > > > < q q > > > > > > : Phase II: Analytic geometry Phase II: Procedures Equilibrium method, if not ( x 4 , y 4 ) ( x 1 , y 1 ) ( x 1 , y 1 ) Solve equations using analytic geometry, if 120 ◦ ( x , y ) ( x , y ) ( x' , y' ) ( x 3 , y 3 ) ( x 1 − x )( x 2 − x )+( y 1 − y )( y 2 − y ) ( x 2 − x )2+( y 2 − y )2 = cos 120 ◦ ( x 3 , y 3 ) ( x 1 − x )2+( y 1 − y )2 ( x 2 , y 2 ) ( x 2 , y 2 ) ( x 1 − x )( x ′− x )+( y 1 − y )( y ′− y ) (a) (b) ( x ′− x )2+( y ′− y )2 = cos 120 ◦ ( x 1 − x )2+( y 1 − y )2 ( x 1 − x ) / ( y 1 − y ) = ( x 3 − x ′ ) / ( y 3 − y ′ ) Figure: Compute balanced positions ( x 2 − x ) / ( y 2 − y ) = ( x 4 − x ′ ) / ( y 4 − y ′ ) (1) Presenter: Jiaqing Huang EIE, HUST “A Recursive Partitioning Algorithm for SIF”, Globecom’14 PPT

  18. Motivation Formulation Algorithm Algorithm, Simulations Simulations Conclusion New Heuristic Algorithm: Phase II Figure: 1 st round of Phase I: Compute optimal positions for relay using analytic geometry Presenter: Jiaqing Huang EIE, HUST “A Recursive Partitioning Algorithm for SIF”, Globecom’14 PPT

  19. Motivation Formulation Algorithm Algorithm, Simulations Simulations Conclusion New Heuristic Algorithm: Phase I (2 nd round) Figure: 2 nd round of Phase I q=q+1=3; Apply retention mechanism Construct complete graph; Apply LP Presenter: Jiaqing Huang EIE, HUST “A Recursive Partitioning Algorithm for SIF”, Globecom’14 PPT

Recommend


More recommend