a cluster method for spectral properties
play

A Cluster Method for Spectral Properties of Correlated Electrons - PowerPoint PPT Presentation

A Cluster Method for Spectral Properties of Correlated Electrons David Snchal Department de physique Universit de Sherbrooke HPCS 2003 May 13, 2003 UNIVERSIT DE SHERBROOKE Outline The Hubbard Model of Correlated Electrons


  1. A Cluster Method for Spectral Properties of Correlated Electrons David Sénéchal Department de physique Université de Sherbrooke HPCS 2003 May 13, 2003 UNIVERSITÉ DE SHERBROOKE

  2. Outline • The Hubbard Model of Correlated Electrons • The spectral function • Cluster Perturbation Theory • « Exact » diagonalization • Some Results UNIVERSITÉ DE SHERBROOKE

  3. High-temperature Superconductors The action is taking place on the CuO 2 planes UNIVERSITÉ DE SHERBROOKE

  4. 1D : Organic superconductors (TMTSF) 2 PF 6 Vertical stacks UNIVERSITÉ DE SHERBROOKE

  5. The Hubbard Model t t ¢ • One electron orbital per atom t • Hybridation between neighbors • Screened Coulomb repulsion • Simplest model of Correlated Electrons UNIVERSITÉ DE SHERBROOKE

  6. The Hubbard Model : quantum states Example : half-filled case Binary representation of states : (up spins; down spins) 1 site : (1;0) , (0;1) 2 sites : (10;01) , (01;10) , (10;10) , (01;01) 2 Ê ˆ L ! ª 2 L L sites : ˜ Á ( L /2 ) ! L /2 ( ) ! Ë ¯ Number of states increases exponentially with size • 12 sites : 853 776 states (5.6 MB) • 16 sites : 41 409 225 states (1.3 GB) UNIVERSITÉ DE SHERBROOKE

  7. The Hubbard Model : Hamiltonian c i s : Removes an electron of spin s ( ↑ or Ø ) at site i † : Adds an electron of spin s ( ↑ or Ø ) at site i c i s † c i s n i s = c i s : # of electrons (0 or 1) of spin s at site i t ij : Hybridation (hopping amplitude) between sites i and j U : Coulomb repulsion energy for two electrons on same site UNIVERSITÉ DE SHERBROOKE

  8. Hamiltonian : example 2 site case at half-filling, total spin zero, NN hopping t In this basis : potential energy is diagonal, kinetic energy is off-diagonal UNIVERSITÉ DE SHERBROOKE

  9. U = 0 : Band Theory Electrons are independent • They occupy plane wave states of • wavevector k and energy e ( k ) UNIVERSITÉ DE SHERBROOKE

  10. U = 0 : Fermi Surface t > 0 t ¢ = 0 t > 0 t ¢ = –0.4 t p p k y k y 0 0 -p -p -p 0 p -p 0 p k x k x UNIVERSITÉ DE SHERBROOKE

  11. U ≠ 0 : Correlated electrons methods needed… Analytical • Perturbation theory and self-consistent variations • Variational • Renormalization Group • Bosonization, conformal field theory • Etc. Numerical • Quantum Monte Carlo (like in lattice QCD) • Exact diagonalizations • Density-Matrix renormalization group • Dynamical Mean Field Theory (DMFT) • Cluster methods: DCA, CDMFT, CPT… • Etc. UNIVERSITÉ DE SHERBROOKE

  12. The Spectral Function A (k, w ) ground state exact eigenstate • Probability that an electron of momentum k added to, or removed from the system have energy w • Independent electrons: A ( k , w ) = d ( w-e k ) • Measurable par ARPES (angle-resolved photoemission spectroscopy) UNIVERSITÉ DE SHERBROOKE

  13. ARPES Angle-Resolved Photoemission Spectroscopy q photon D.o.S. : A( k , w<0 ) f V i 2 r ( E , W ) G i Æ f = 2 p h k e electron z Matrix x element k material hole UNIVERSITÉ DE SHERBROOKE

  14. Green Function & Spectral function UNIVERSITÉ DE SHERBROOKE

  15. Cluster Perturbation Theory • Numerical, exact diagonalization on a small cluster (open BCs) • Extension to the whole lattice by Dyson’s equation • Allows a continuum of wavevectors • Short-range effects well rendered UNIVERSITÉ DE SHERBROOKE

  16. CPT : Details Dyson’s equation Basic CPT approximation UNIVERSITÉ DE SHERBROOKE

  17. Exact diagonalization We need to calculate the Green function for a • finite cluster, with open boundary conditions This means: • Calculating the ground state of H • Adding or removing an electron from it • Calculating • UNIVERSITÉ DE SHERBROOKE

  18. Lanczös Algorithm Iterative algorithm to find the extreme • eignenvalues and eigenvectors of a very large matrix Works by multiply-add only • Requires 3 vectors in memory + way of applying • matrix (stored in sparse form or otherwise) Used also to build a reduced-size, approximate • form of H for inversion UNIVERSITÉ DE SHERBROOKE

  19. Lanczös Algorithm : Details UNIVERSITÉ DE SHERBROOKE

  20. Continued fraction representation UNIVERSITÉ DE SHERBROOKE

  21. Example : 1D Hubbard Model 12-site cluster, half-filling, U = 4t energy Fermi level Spin-charge separation wavevector UNIVERSITÉ DE SHERBROOKE

  22. 1D case: U Æ ∞ limit Exact result from the Bethe Ansatz solution J. Favand et al. Phys. Rev. B 55, R4859 (1997) UNIVERSITÉ DE SHERBROOKE

  23. 1D case: U Æ ∞ limit CPT 14 sites UNIVERSITÉ DE SHERBROOKE

  24. ARPES in high-T c : NCCO Electron-doped high- T c superconductor « hot spot » (p,p) x = 0.05 x = 0.10 x = 0.15 (0,0) (p,0) Armitage et al., Phys. Rev. Lett. 88, 257001 (2002) AF zone boundary Nd 2-x Ce x CuO 4 UNIVERSITÉ DE SHERBROOKE

  25. n = 1.111 3x3 cluster U = 3 U = 8 (0,p) (p,p) 2D Hubbard Model t’/t = -0.4, t’’/t = 0.2 Cluster Perturbation Theory UNIVERSITÉ DE (0,0) (p,0) SHERBROOKE

  26. ARPES in high-T c : CCCO Hole-doped cuprate Ca 2-x Na x CuO 2 Cl 2 (0,p) (p,p) k y (p,0) k x G Ronning et al. , cond-mat/0301024 UNIVERSITÉ DE SHERBROOKE

  27. n = 0.833 3x4 cluster U = 2 U = 8 (0,p) (p,p) 2D Hubbard Model t’/t = -0.4, t’’/t = 0.2 Cluster Perturbation Theory (0,0) (p,0) UNIVERSITÉ DE SHERBROOKE

  28. 2D Hubbard model U = t, 14 electrons on 3x4 cluster Imaginary part of the self-energy (scattering rate) 1 0.8 0.6 k y / p 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 k x / p UNIVERSITÉ DE SHERBROOKE

  29. Seen this before? UNIVERSITÉ DE SHERBROOKE

  30. Conclusions • CPT is an efficient way of extending the usual Exact Diagonalization results to an infinite lattice • A( k , w ) may be calculated for a continuum of k • Comparison with ARPES results indicates that the one-band Hubbard model captures the main features of high-Tc superconductors UNIVERSITÉ DE SHERBROOKE

  31. The End Thanks to : NSERC (Canada) FQRNT (Québec) RQCHP D. Pérez, D. Plouffe, A.-M. Tremblay X. Barnabé-Thériault, M. Bozzo-Rey Centre de Calcul Scientifique (CCS) UNIVERSITÉ DE SHERBROOKE

Recommend


More recommend