19 6 2013 forum on tracking detector mechanics at oxford
play

19.6.2013 Forum on Tracking Detector Mechanics at Oxford Aleksis - PowerPoint PPT Presentation

19.6.2013 Forum on Tracking Detector Mechanics at Oxford Aleksis Chvez Niemel, CERN 1 4.6.2013 Abbaneo, Duccio Conde Garca, Antonio Honma, Alan Mersi, Stefano Onnela, Antti Postema, Hans Aleksis Chvez Niemel,


  1. 19.6.2013 Forum on Tracking Detector Mechanics at Oxford Aleksis Chávez Niemelä, CERN 1 4.6.2013

  2.  Abbaneo, Duccio  Conde García, Antonio  Honma, Alan  Mersi, Stefano  Onnela, Antti  Postema, Hans Aleksis Chávez Niemelä, CERN 4.6.2013 2

  3.  Benefits of tilting the modules  How it works (modelling)  Challenges with this geometry  Mid-section  Ring sections  Few words on rods and end disks (if we have time) Aleksis Chávez Niemelä, CERN 3 4.6.2013

  4. 2S modules PS modules S. Mersi Aleksis Chávez Niemelä, CERN 4 4.6.2013

  5.  Traditionally implemented with rods Aleksis Chávez Niemelä, CERN 5 4.6.2013

  6. 2S modules PS modules S. Mersi Aleksis Chávez Niemelä, CERN 6 4.6.2013

  7.  Base line concept  Distinct barrel and end gap geometries  Relatively small surface area of the PS modules not used to greatest extent -> more modules  Tilted module concept  Gradual transformation from barrel to end cap – like geometry  PS module surface area better utilized -> less modules Aleksis Chávez Niemelä, CERN 7 4.6.2013

  8.  Some degree of modularity  Reasonable assembly, structures, etc.  Reduce the number of modules Aleksis Chávez Niemelä, CERN 8 4.6.2013

  9.  Ideal case: module faces always perpendicular to particle tracks  PS module shape facilitates compact inner rings (closest to the beam line Aleksis Chávez Niemelä, CERN 9 4.6.2013

  10.  Number of modules in the barrel section: 2836 vs. 4164  Less modules -> less material..  Less power consumption  Less material in active volume  Fewer services required..  Lower cost Aleksis Chávez Niemelä, CERN 10 4.6.2013

  11.  Coordinates generated on an excel table (Duccio Abbaneo, Stefano Mersi)  Copied to a design table in Catia  Adjustment by eye (at this stage) Aleksis Chávez Niemelä, CERN 11 4.6.2013

  12.  ..And we get a CAD model Aleksis Chávez Niemelä, CERN 12 4.6.2013

  13. Aleksis Chávez Niemelä, CERN 13 4.6.2013

  14.  Avoid clashes: some geometries simply impossible  Staying ‘close’ to optimal coordinates  Routing of services, cables..  Different support structure needed as compared to rod assemblies, not much experience Aleksis Chávez Niemelä, CERN 14 4.6.2013

  15.  Ideal solution.. modules are always optimally aligned ..but Aleksis Chávez Niemelä, CERN 15 4.6.2013

  16.  Clashes, clashes and clashes  Deviation from optimal coordinates required to avoid clashes Aleksis Chávez Niemelä, CERN 16 4.6.2013

  17.  The module positions can be adjusted in various ways:  (Radius) Each module ring can be adjusted individually – but the adjacent ones have to compensate  (Angle) Module pairs – upper and lower modules on the same ring – can also be adjusted  Other adjustments include: coverage and gap Aleksis Chávez Niemelä, CERN 17 4.6.2013

  18.  Deviations from optimal positions beamline and angles necessary to avoid clashes Aleksis Chávez Niemelä, CERN 18 4.6.2013

  19.  Upper layer provides hermiticity (one hit)  Lower layer modules can then be tuned for best clearance (with limitation) Aleksis Chávez Niemelä, CERN 19 4.6.2013

  20.  Three layers  Layer 1 has less modules than 2 and 3  But is also more packed due to smaller radius  Layer 3 has the most modules  But is slightly ‘easier’ to populate Aleksis Chávez Niemelä, CERN 20 4.6.2013

  21.  Divide the modules into easy and not so easy sections  For example, most congested modules could form a group.. Aleksis Chávez Niemelä, CERN 21 4.6.2013

  22. Aleksis Chávez Niemelä, CERN 22 4.6.2013

  23. Aleksis Chávez Niemelä, CERN 23 4.6.2013

  24.  Rods including a number of modules could form a ring-like structure to cover the mid-section Aleksis Chávez Niemelä, CERN 24 4.6.2013

  25.  ..And they could be assembled something like this.. Aleksis Chávez Niemelä, CERN 25 4.6.2013

  26.  Let’s add some connectors Aleksis Chávez Niemelä, CERN 26 4.6.2013

  27. Aleksis Chávez Niemelä, CERN 27 4.6.2013

  28.  Modules after the midsection in +/- direction  Larger gaps between modules  More clearance  More minimalistic support structure so save in mass? Aleksis Chávez Niemelä, CERN 28 4.6.2013

  29.  Cooling pipe between the layers Aleksis Chávez Niemelä, CERN 29 4.6.2013

  30. Aleksis Chávez Niemelä, CERN 30 4.6.2013

  31. Aleksis Chávez Niemelä, CERN 31 4.6.2013

  32. Aleksis Chávez Niemelä, CERN 32 4.6.2013

  33. Aleksis Chávez Niemelä, CERN 33 4.6.2013

  34.  Combines both layers into one ring unit  Only one cooling pipe  Limited weight for the support structure Aleksis Chávez Niemelä, CERN 34 4.6.2013

  35.  We can fit the modules but..  How optimal are the coordinates, tilt, coverage..  Support structures (weight, rigidity)  Services (cooling, routing cables)  Dark clouds..  Can the PS module be cooled effectively Aleksis Chávez Niemelä, CERN 35 4.6.2013

  36. Aleksis Chávez Niemelä, CERN 36 4.6.2013

  37. Aleksis Chávez Niemelä, CERN 37 4.6.2013

  38.  We have done preliminary layout exercises with rods and 2S modules  Relying on past experience  Cooling under research: pipe, inserts, contact area.. Aleksis Chávez Niemelä, CERN 38 4.6.2013

  39. Aleksis Chávez Niemelä, CERN 39 4.6.2013

  40.  Research done by Nick Lumb in Lyon  Modules arranged into cocentric disks or into D’s  Space required depends on the height of components  Cooling and services also affect the thickness of the disks Aleksis Chávez Niemelä, CERN 40 4.6.2013

  41.  Nick is also battling with clashes  Especially in the transition from PS to 2S modules Aleksis Chávez Niemelä, CERN 41 4.6.2013

  42. Aleksis Chávez Niemelä, CERN 42 4.6.2013

Recommend


More recommend