13/02/12 Role of complementarity on Entanglement detection Ryo Namiki Quantum optics group, Kyoto University 求職中
● Quantum entanglement A B ● Inseparability (entangled state) Form of density operators AB ≠ ∑ i p i Ai ⊗ Bi LOCC: e.g. , ∣ 〉 AB =∑ i a i ∣ i 〉 A ∣ i 〉 B 〈 i ∣ j 〉 = i , j Local quantum Operation & ● Entanglement measure (LOCC monotone) Classical Communication Quantify the strength of quantum correlation A B time M AB ≥ M L LOCC AB A i 1 † B i 2 † A i 3 † B i 4 B i 2 i 1 † L LOCC AB =∑ i B i 4 A i 3 B i 2 A i 1 AB A i 1 =∑ i K Ai ⊗ L Bi AB K Ai ⊗ L Bi † A i 3 i 2, i 1 B i 4 i 3, i 2, i 1 Guhne&Toth, Phys. Rep. 474, 1 (2009) Horodeckis, Rev. Mod. Phys. 81, 865, (2009)
Basic concepts on Quantum mechanics p 2 V C : =∥[ x , p ]∥/ 2 4 ● Canonical uncertainty relation x 2 p 2 C 2 3 Trade off 2 〈 2 x 〉〈 2 p 〉 ≥ 1 / 4 ∥[ x , p ]∥ 1 unphysical x 2 4 U ● Quantum entanglement 0 1 2 3 AB ≠ ∑ i p i Ai ⊗ Bi - Inseparability A B 〈 i ∣ j 〉 = i , j e.g. , ∣ 〉 AB =∑ i a i ∣ i 〉 A ∣ i 〉 B - Entanglement measure M AB ≥ M L LOCC AB
Einstein-Podolsky-Rosen (EPR) state A B ∣ 〉 AB : =∫ dx ∣ x 〉 A ∣ x 〉 B / 2 ∣ x 1 〉 ........... ∣ x 1 〉 ∣ x 2 〉 ........... ∣ x 2 〉 Simultaneous eigenstate of ∣ x 3 〉 ........... ∣ x 3 〉 p A p B , x A − x B ⋮ Positions are correlated and ∣ p 1 〉 ........... ∣ − p 1 〉 Momentums are anti-correlated ∣ p 2 〉 ........... ∣ − p 2 〉 〈 2 p B 〉 ~ 0 ; 〈 2 x B 〉 ~ 0 ∣ p 3 〉 ........... ∣ − p 3 〉 p A x A − ⋮ p 2 V V 4 4 EPR paradox! A B Uncertainty relation! 3 3 UV 1 x 2 p 2 C 2 u 2 v 2 = 1 2 2 U = 〈 2 u x B 〉 / C x A − v V = 〈 2 u p B 〉 / C p A v 1 1 x 2 4 U 4 U 0 1 2 3 0 1 2 3
Entanglement detection via EPR paradox Product criterion for entanglement C : =∣[ x , p ]∣/ 2 〈 2 u x B 〉〈 2 u p B 〉 C 2 x A − v p A v 〈 2 u x B 〉〈 2 u p B 〉 C 2 x A − v p A − v Uncertainty relation! V. Giovannetti et al., Phys. Rev. A 67, 022320 (2003) Stronger Correlation beyond the uncertainty limit V EPR paradox! 4 ● Quantum entanglement UV 1 3 AB ≠ ∑ i p i Ai ⊗ Bi u 2 v 2 = 1 2 U = 〈 2 u x B 〉 / C x A − v V = 〈 2 u p B 〉 / C p A v Give a constraint on the form 1 Of the density operator 4 U 0 1 2 3
Complementary correlations for entanglement Z ∣ 0 〉 = ∣ 0 〉 X ∣ 0 〉 = ∣ 0 〉 ● Maximally entangled state (of two qubits) Z ∣ 1 〉 =− ∣ 1 〉 X ∣ 1 〉 =− ∣ 1 〉 ∣ 0 〉 = ∣ 00 〉 ∣ 11 〉 / 2 0 〉 = ∣ 0 〉 ∣ 1 〉 / 2 ∣ = ∣ 0 〉 ∣ 1 〉 / 2 0 1 ∣ 1 〉 = ∣ 0 〉 − ∣ 1 〉 / 2 Simultaneous eigenstate of product Pauli operators: Z : = [ 0 − 1 ] 1 0 X A Z A X B , Z B Strong correlations on the conjugate variables X : = [ 0 ] 0 1 〈 X B 〉 = 0 X A − 〈 Z B 〉 = 0 1 Z A − An average correlation of the Z-basis bits and X-basis bits exceeds 75% 〈 Z B 〉 1 X A X B Z A the state is entangled: AB ≠ ∑ i p i Ai ⊗ Bi
Uncertainty relations and entanglement A B 〈 2 u x B 〉〈 2 u p B 〉 C 2 x A − v p A v Continuous-variable systems Continuous-variable entanglement C : =∣[ x , p ]∣/ 2 〈 Z B 〉 1 X A X B Z A Pair of two-levels systems Qubit-Qubit entanglement Pair of d-level systems Strength of measured correlations Uncertainty Qudit-Qudit entanglement relations? ● Fourier-based uncertainty relations ● Generalized Pauli-operators on d-level systems R. Namiki and Y. Tokunaga, Phys. Rev. Lett. 108, 230503 (2012)
Complementary elements and Uncertainty Relations Conjugate bases: on d- level system Two Fourier distributions Cannot have sharp peaks simultaneously Trade-off Never coexist on the unit circle (At least one is inside) Two (generalized) Pauli operators 〈 Z 〉 = ∑ j P j e i j
Complementary elements and Uncertainty Relations Conjugate bases: on d- level system Discrete Fourier-based Uncertainty relations
Theorem. The state is entangled if it satisfies either of d × d level system R. Namiki and Y. Tokunaga, 2 qubits ( d =2) Phys. Rev. Lett. 108, 230503 (2012) 〈 Z B 〉 1 X A X B Z A Discrete Fourier-based Uncertainty relations R. Namiki and Y. Tokunaga, Phys. Rev. Lett. 108, 230503 (2012)
Theorem. The state is entangled if it satisfies either of For d = 2,3 two conditions are equivalent. R. Namiki and Y. Tokunaga, For d 4 there are mutually exclusive subsets. ≧ Phys. Rev. Lett. 108, 230503 (2012) X: Verified to be entangled by the first condition 〇 . Y: Verified to be entangled by the first condition △ . ∣ l ,m 〉 = l m ∣ 0,0 〉 X A Z B F x : Floor function
Basic concepts on Quantum mechanics p 2 V C : =∥[ x , p ]∥/ 2 4 ● Canonical uncertainty relation x 2 p 2 C 2 3 Trade off 2 〈 2 x 〉〈 2 p 〉 ≥ 1 / 4 ∥[ x , p ]∥ 1 unphysical x 2 4 U ● Quantum entanglement 0 1 2 3 AB ≠ ∑ i p i Ai ⊗ Bi - Inseparability A B 〈 i ∣ j 〉 = i , j e.g. , ∣ 〉 AB =∑ i a i ∣ i 〉 A ∣ i 〉 B - Entanglement measure M AB ≥ M L LOCC AB
Theorem. Multi-level coherence AB ≠ ∑ i p i ∣ i 〉〈 i ∣ k − 1 a i ∣ u i 〉 A ⊗ ∣ v i 〉 B ∣ i 〉 = ∑ i = 0 1 ≤ k ≤ d ∣ 〉 AB ∝ ∣ 0 〉 ∣ 0 〉 ∣ 1 〉 ∣ 1 〉 ∣ 2 〉 ∣ 2 〉 ..... Total correlations A B The state needs to include # of k+1 coherent superposition of the product states The figure k is called the Schmidt number which can quantify entanglement (entanglement monotone). For k = 1 AB ≠ ∑ i p i Ai ⊗ Bi = ∑ i p i ' ∣ i 〉〈 i ∣ ⊗ ∣ i 〉〈 i ∣ R. Namiki and Y. Tokunaga, Phys. Rev. Lett. 108, 230503 (2012)
Theorem. Multi-level coherence of Quantum Gates ' = E ≠ ∑ i A i A i † k − 1 = 1 2 1 k F F d rank A i ≤ k Description by less-than rank -k Input-output correlation Kraus operators is not admissible! F = 1 2 d ∑ i 〈 i ∣ E ∣ i 〉〈 i ∣ ∣ i 〉 〈 i ∣ E ∣ i 〉 〈 i ∣ ∣ i 〉 ∃ A i s.t. ,rank A i k Z-basis X-basis ' E Trace-preserving Tr ' = Tr = 1 Ideal unitary gates † E ideal = U U † U = 1 U rank U = d rank A ≤ k General physical maps k − 1 a i ∣ u i 〉 A ⊗ ∣ v i 〉 B † A i = 1 ' = E = ∑ i A i A i ∑ i A i A A ∣ 〉 ∝ ∑ i = 0 † Degrade Schmidt number Less-than k R. Namiki and Y. Tokunaga, Phys. Rev. A 85, 010305(R) (2012).
Application for known experiments ' = E ≠ ∑ i A i A i † k − 1 = 1 2 1 k F F d rank A i ≤ k Input-output correlation (Average fidelity) F = 1 2 d ∑ i 〈 U i ∣ E ∣ i 〉 〈 i ∣ ∣ U i 〉 〈 U i 〉 i ∣ E ∣ i 〉 〈 i ∣ ∣ U A basic elements of quantum computer: CNOT gate Entanglement d = 4 Breaking F = 1 k = 1 C-Not Gate Schmidt number k 2 F Z F X k = 2 (at least) k = 3 U C − NOT : ∣ i 〉 ∣ U i 〉 0.89 [24] 4 ∣ 0 〉 ∣ 0 〉 ∣ 0 〉 ∣ 0 〉 3 = 0.875 F ∣ 0 〉 ∣ 1 〉 ∣ 0 〉 ∣ 1 〉 3 0.86 [23] ∣ 1 〉 ∣ 0 〉 ∣ 1 〉 ∣ 1 〉 2 = 0.75 F ∣ 1 〉 ∣ 1 〉 ∣ 1 〉 ∣ 0 〉 2 1 = 0.625 F 0 〉 ∣ 0 〉 ∣ 0 〉 ∣ 0 〉 ∣ ∣ 0 〉 ∣ 1 〉 ∣ 1 〉 ∣ 1 〉 ∣ 1 〉 ∣ 0 〉 ∣ 1 〉 ∣ 0 〉 ∣ 1 〉 ∣ 1 〉 ∣ 0 〉 ∣ 1 〉
Summary Role of Complementary on Entanglement detection Quantum entanglement & Uncertainty relations Simultaneous correlations on complementary observables → Inseparability of two-body density operators → Strength of quantum correlations X X Z Z →(Coherence of Quantum Gates) ● Two measurement settings ● Multi-dimensional entanglement A B →Detection of Non-Gaussian entanglement uncertainty relations based on SU(2) and SU(1,1) generators R. Namiki and Y. Tokunaga, Phys. Rev. Lett. 108, 230503 (2012). (R. Namiki and Y. Tokunaga, Phys. Rev. A 85, 010305(R) (2012). ) R. Namiki, Phys. Rev. A 85, 062307 (2012).
Recommend
More recommend