[9-1] Mor M. Peretz, Switch-Mode Power Supplies Control of switch-mode converters Current Programmed Mode control CPM Mor M. Peretz, Switch-Mode Power Supplies [9-2] Problem of voltage mode control V o d dB dB - 40 dec dB - 20 dec Second order transfer function = complex compensator Mor M. Peretz, Switch-Mode Power Supplies [9-3] Additional feedback System order reduction System order is reduced for each state variable (inner loop) feedback 1
[9-4] Mor M. Peretz, Switch-Mode Power Supplies Current feedback loop I o L i o V o v o S V in C R L D N d D AMP MOD V V v e e i o 1 For ‘strong’ feedback v N e LG 1 v 0 ε 1 i v o e N Mor M. Peretz, Switch-Mode Power Supplies [9-5] System representation in CPM v e N v o v e R L N 1 π 2 C o R L Mor M. Peretz, Switch-Mode Power Supplies [9-6] Design of the feedback loops V o V e Instrumentation I limit L V e BW of the inner loop must be well above the outer loop BW 2
[9-7] Mor M. Peretz, Switch-Mode Power Supplies Design of the feedback loops V Mor M. Peretz, Switch-Mode Power Supplies [9-8] The advantages of current feedback v o v v o e v 20 db e dec 40 db db dec 40 dec db 20 dec Same power stage Typical power stage (outer loop) with VM CM Mor M. Peretz, Switch-Mode Power Supplies [9-9] Average current mode Z Z inv fv Z fi V ref 3
[9-10] Mor M. Peretz, Switch-Mode Power Supplies Peak current mode I L I c t T S Cycle-by-cycle protection Mor M. Peretz, Switch-Mode Power Supplies [9-11] PCM and ACM • Current feedbacks - reduce the order of system • The difference is in BW of the current feedback loop • Increase the output impedance Mor M. Peretz, Switch-Mode Power Supplies [9-12] Sub-harmonic oscillations I L V e D<0.5 I 2 < I 1 I 1 I 2 t T S I L V e I D>0.5 I 2 > I 1 1 I 2 t 4
[9-13] Mor M. Peretz, Switch-Mode Power Supplies Stability analysis of Sub-harmonic oscillations I t I m t 0 L on L 1 on I T I t m t L s L on 2 off I T I m t m t 0 L s L 1 on 2 off I T I Steady-state: 0 L s L m t m t on off 1 2 t m D on 2 on t m D off 1 off Mor M. Peretz, Switch-Mode Power Supplies [9-14] Stability analysis of Sub-harmonic oscillations I D d T I i m D d T 0 0 L s L L s 1 DC I DT I m DT : 0 L s L s 1 AC I dT i m dT : 0 L s L s 1 i m dT 0 L s 1 i T m dT L s s 2 m D i T i i on 0 2 0 L s L L m D off 1 Mor M. Peretz, Switch-Mode Power Supplies [9-15] Stability analysis of Sub-harmonic oscillations D i T i on 0 L s L D off 2 D D i T i T on i on 2 0 L s L s L D D off off n D D i nT i n T on i on 1 0 L s L s L D D off off D on 0, 1 D n D off i nT Stable when D 0.5 i nT i on 0 L s on L s L D D on off , 1 D off 5
[9-16] Mor M. Peretz, Switch-Mode Power Supplies Slope compensation I t I t I L r c I t I I t L c r Mor M. Peretz, Switch-Mode Power Supplies [9-17] Slope compensation I I t c r i m m dT 0 L r s 1 i T m m dT L r s 2 m m i T i 2 r 0 L s L m m n r m m 1 n i nT i r i 0 2 0 L s L L m m r 1 0, 1 i nT L s , 1 m m r r 1 1 m m m m m r r 2 2 2 0.5 m m D m m m m r on r r 1 1 2 m m D m off 2 2 2 Mor M. Peretz, Switch-Mode Power Supplies [9-18] 6
[9-19] Mor M. Peretz, Switch-Mode Power Supplies Mor M. Peretz, Switch-Mode Power Supplies [5-20] 7
Recommend
More recommend