Zirconium hydride precipitation and dissolution kinetics in zirconium alloys E. Lacroix 1,2 , P.-C. Simon 2 , A. T. Motta 2 and J. D. Almer 3 1 : Framatome, Lynchburg, VA, USA 2 : Pennsylvania State University, PA, USA 3 : Argonne National Laboratory, Lemont, IL, USA 19 th International Symposium on Zirconium in the Nuclear Industry Manchester, UK, May 22 nd , 2019 1
Outline – Hydride hysteresis understanding • Background • – How can hydrogen behavior be studied? Experiments – How can we incorporate the experimental • Model development data obtained to create the HNGD model • Conclusions 2
Conclusions Model Background: Hydride hysteresis understanding Experiments Background 3
Zirconium / zirconium hydride hysteresis Conclusions Hydride precipitation behavior by region 250 TSSD Hydrogen content in solid solution (wt.ppm) Model TSSP 200 Experiments Precipitation Precipitation 150 Hydride nucleation and growth 100 Dissolution Background 50 if hydrides are present 0 0 50 100 150 200 250 300 350 400 450 Temperature ( ° C) E. Lacroix, A. T. Motta, J.D. Almer "Experimental determination of zirconium hydride precipitation and dissolution in zirconium alloy", Journal of Nuclear Materials , 509 (2018) 162-167. 4
Terminal solid solubility for precipitation and dissolution z 603 wt.ppm 400 wt.ppm 541 wt.ppm E. Lacroix, A. T. Motta, J.D. Almer "Experimental determination of zirconium hydride precipitation and dissolution in zirconium alloy", Journal of Nuclear Materials , 509 (2018) 162-167. 5
Conclusions z Model Dissolution Temperature Experiments hydrides Background Dissolved Hydrogen E. Lacroix, A. T. Motta, J.D. Almer "Experimental determination of zirconium hydride precipitation and dissolution in zirconium alloy", Journal of Nuclear Materials , 509 (2018) 162-167. 6
Conclusions Model Precipitation Temperature hydrides Experiments Dissolved hydrogen Background E. Lacroix, A. T. Motta, J.D. Almer "Experimental determination of zirconium hydride precipitation and dissolution in zirconium alloy", Journal of Nuclear Materials , 509 (2018) 162-167. 7
Conclusions Model How was the hydride Experiments behavior studied? Background 8
Experimental Setup at Beamline 1 at APS Conclusions Load Frame Model Experiments Clam shell Sample furnace Background 9
Conclusions z Integration of diffraction data Model Experiments Diffraction patterns Peak intensity Peak position Background Peak width Raw data volume fraction Stress Size of the crystal size 10
Differential Scanning Calorimetry Conclusions (DSC) Model Experiments Heating system and sample holder Background Cooling System 11
Conclusions Model Nucleation and Dissolution Experiments kinetics measurement using Synchrotron X-ray diffraction Background 12
Nucleation and Dissolution kinetics: Conclusions hypothesis • First order kinetics in the form: 𝑒𝐷 𝑇𝑇 Model 𝑒𝑢 = −𝐿 ⋅ 𝐷 𝑇𝑇 − 𝐷 𝑓𝑟 • Differentiating: Experiments Δ𝐷 𝑇𝑇 𝐿 = − (𝐷 𝑇𝑇 −𝐷 𝑓𝑟 )Δ𝑢 • K is the kinetic constant, following an Arrhenius law: 𝐿 = 𝐿 0 ⋅ exp − 𝐹 𝑞 Background 𝑙 𝐶 𝑈 𝐷 𝑇𝑇 is the hydrogen content in solid solution (wt.ppm) 𝐷 𝑓𝑟 is the hydrogen content in solid solution at equilibrium (wt.ppm) 𝐿 0 is the pre-exponential factor ( 𝑡 −1 ) 𝑙 𝐶 is the Boltzmann constant 𝑈 is the temperature (K) 𝐹 𝑞 is the activation energy of the process (eV/atom) 13
Studying hydrogen behavior in Zr Conclusions Model Experiments Background • • 𝑈𝑇𝑇 P , 𝑈𝑇𝑇 𝐸 (dynamic) I: III: Dissolution rate Nucleation rate • II: 𝑈𝑇𝑇 D (equilibrium) Δ𝐷 𝑇𝑇 𝐿 = − 14 (𝐷 𝑇𝑇 −𝐷 𝑓𝑟 )Δ𝑢
Studying hydrogen behavior in Zr Conclusions • Nucleation Kinetics 𝑒𝐷 𝑇𝑇 • 𝑒𝑢 = −𝐿 𝑂 (𝐷 𝑇𝑇 − 𝑈𝑇𝑇 𝑄 ) Model −Δ𝐷 𝑇𝑇 • 𝐿 𝑂 = Δ𝑢 𝐷 𝑇𝑇 −𝑈𝑇𝑇 𝑄 Experiments Background 15
Studying hydrogen behavior in Zr Conclusions • Dissolution Kinetics 𝑒𝐷 𝑇𝑇 • 𝑒𝑢 = −𝐿 𝐸 (𝐷 𝑇𝑇 − 𝑈𝑇𝑇 𝐸 ) Model −Δ𝐷 𝑇𝑇 • 𝐿 𝐸 = Δ𝑢 𝐷 𝑇𝑇 −𝑈𝑇𝑇 𝐸 Experiments Background 16
Conclusions Model Growth kinetics measurement Experiments using DSC Background 17
Differential Scanning Calorimetry Conclusions ASTM standard E2070 𝑦(𝑢) = Δ𝐼 𝑢 𝐷 𝑄𝑄 (𝑢) Δ𝐼 𝑢𝑝𝑢 = 𝐷 0 − 𝑈𝑇𝑇 𝐸 (𝑢) Model 350 ℃ 320 ℃ 305 ℃ Experiment 300 ℃ 𝑦 = 1 − exp − 𝐿 𝐻 𝑢 𝑞 290 ℃ 280 ℃ Background Growth Kinetics Parameter Avrami Parameter Depends on the growth Dimensionality of the growth. • regime 2.5 for platelets • 0 ⋅ exp − 𝐹 𝐻 3 for spheres, 1 for 𝐿 𝐻 = 𝐿 𝐻 needles 𝑙 𝐶 𝑈 18
Differential Scanning Calorimetry Conclusions ASTM standard E2070 Model (𝑦, 𝑢) Experiment (𝑦, 𝑢) (𝑦, 𝑢) 99% Background 19
Time Temperature Transformation diagram Conclusions 𝐸 Phase transformation reaction, 𝐿 𝐻 𝑈 𝑒 Model Temperature Experiment 𝑆 Diffusion reaction, 𝐿 𝐻 Background Time to reach 99% of reaction 𝐿 = 1 1 𝐸 + 1 𝑆 𝐿 𝐻 𝐿 𝐻 20
Conclusions Experiment repeated to obtain TTT Model Experiment Background 21
Conclusions Model Model development Experiment Background 22
Model Summary Conclusions Hydride precipitation behavior by region 250 TSSD Hydrogen content in solid solution (wt.ppm) Model TSSP 200 Hydride nucleation and growth Experiment 150 Nucleation: 𝑦 = 1 − exp(−K N t) 𝑦 = 1 − exp − 𝐿 𝐻 𝑢 𝑞 Growth: 100 Dissolution if hydrides are present Background 50 𝑦 = exp −𝐿 𝐸 𝑢 0 0 50 100 150 200 250 300 350 400 450 Temperature ( ° C) 23
Model Results Conclusions Model Experiment Background 24
Synchrotron Experiment Simulation Conclusions Model Experiment Background E. Lacroix, A. T. Motta, J.D. Almer "Experimental determination of zirconium hydride precipitation and 25 dissolution in zirconium alloy", Journal of Nuclear Materials , 509 (2018) 162-167.
1” Conclusions z 64 wt.ppm of Hydrogen Hold time: 41 days 157 ⁰C 454 ⁰C Model Experiment Background A. Sawatzky, Hydrogen in Zircaloy-2: its distribution and heat of transport, 26 Journal of Nuclear Materials 2 (1960) 321{328.
Conclusions Conclusions ▪ Synchrotron X-ray diffraction was successfully used to measure nucleation, and dissolution kinetics of hydrides. Model ▪ DSC was successfully used to measure hydride growth Experiment kinetics and to obtain a Time-Temperature-Transformation diagram for hydride precipitation. ▪ A hydrogen precipitation and dissolution model was created Background based on a new approach and showed good agreement with experimental data. 27
Acknowledgement ▪ DOE-NEUP ▪ Argonne National Laboratory ▪ Penn State Nanofab ▪ Penn State MCL 28
Questions
Introducing Hydrogen in the Conclusions zirconium metal 1. Remove oxide from sample using an acid solution 2. Deposit Nickel to prevent further oxidation Model 3. Introduce hydrogen using gaseous charging method Gas tank Experiment Control Volume Furnace Vacuum chamber Background Diffusion Pump Roughing Pump 30
sugar 1. T 0 = Room temperature (RT) 2. T 1 > Room temperature → less solid sugar in the water → more dissolved sugar 3. T 2 > T 1 → Dissolution Temperature → Only dissolved sugar 4. T 3 < T 2 → Precipitation Temperature → first occurrence of solid sugar 5. T 3 hold → Growth of sugar crystals 6. T 4 = Room temperature T 2 T 3 T T 1 T 4 time 32
1” z 64 wt.ppm of Hydrogen 157 ⁰C 454 ⁰C 33
Differential Scanning Calorimetry • Low temperature to measure only diffusion- driven process 1 1 1 𝐿 𝐻 = 𝐸 + • 𝑆 𝐿 𝐻 𝐿 𝐻 • High temperature was implemented using free energy curves 34
Terminal solid solubility for precipitation and dissolution z 603 wt.ppm ✓ Show that hydrogen continues to precipitate 400 wt.ppm below TSS P 541 wt.ppm E. Lacroix, A. T. Motta, J.D. Almer "Experimental determination of zirconium hydride precipitation and dissolution in zirconium alloy", Journal of Nuclear Materials , 509 (2018) 162-167. 35
K. Une and S. Ishimoto, “Dissolution and precipitation behavior of hydrides in Zircaloy - 2 and high Fe Zircaloy,” Journal of Nucl ear Materials, vol. 322, pp. 66 – 72, 2003. K. Colas, A. Motta, D. M.R., and J. Almer, “Mechanisms of hydride reorientation in Zircaloy - 4 studied in situ,” Zirconium in the Nuclear Industry: 17th International Symposium, vol. ASTM STP 1543, pp. 1107 – 1137, 2014. z Terminal solid solubility measurement using DSC 600 TSSP (APS) [5] TSSD (APS) [5] 500 H content TSS D TSS P TSSP (DSC) [3] TSSD (DSC) [3] C SS (wt.ppm) 400 300 ✓ Show that the TSS P is the nucleation temperature 300 200 100 0 Temp T P T D 100 200 300 400 500 600 Temperature ( ° C) 36
Studying hydrogen behavior in Zr • Sample A: 0 MPa • Sample B: 200 MPa 37
Recommend
More recommend