Zee-Burst: Non-Standard Interactions in IceCube Yicong Sui Washington University in St. Louis In collaboration with K. S. Babu (OSU), P. S. Bhupal Dev (WashU), Sudip Jana (MPI) arXiv:1908.02779
Scalars in the Zee model A. Zee Phys. Lett.95B,461(1980)
Scalars in the Zee model A. Zee Phys. Lett.95B,461(1980)
Scalars in the Zee model A. Zee Phys. Lett.95B,461(1980)
Scalars in the Zee model A. Zee Phys. Lett.95B,461(1980) +
Scalars in the Zee model A. Zee Phys. Lett.95B,461(1980) +
Scalars in the Zee model A. Zee Phys. Lett.95B,461(1980) + Due to the structure of scalar potential, will mix with
Scalars in the Zee model A. Zee Phys. Lett.95B,461(1980) + Due to the structure of scalar potential, will mix with As for the Yukawa sector, we have:
Neutrino Mass A. Zee Phys. Lett.95B,461(1980)
Neutrino Mass A. Zee Phys. Lett.95B,461(1980)
Neutrino Mass A. Zee Phys. Lett.95B,461(1980)
Neutrino Mass A. Zee Phys. Lett.95B,461(1980)
Neutrino Mass Mass insertion from SM VEV A. Zee Phys. Lett.95B,461(1980)
Neutrino Mass Mass insertion from SM VEV A. Zee Phys. Lett.95B,461(1980)
Neutrino Mass Charged Lepton Mass Matrix Mass insertion from SM VEV A. Zee Phys. Lett.95B,461(1980)
Neutrino Mass Charged Lepton Mass Matrix Mass insertion from SM VEV A. Zee Phys. Lett.95B,461(1980)
Neutrino Mass Super small 10^(-8) Charged Lepton Mass Matrix Mass insertion from SM VEV A. Zee Phys. Lett.95B,461(1980)
Neutrino Mass Super small O(1) 10^(-8) Charged Lepton Mass Matrix Mass insertion from SM VEV A. Zee Phys. Lett.95B,461(1980)
Neutrino Mass Herrero-Garcia, Ohlsson, Riad, Wiren, 2017’ Super small O(1) 10^(-8) Charged Lepton Mass Matrix Mass insertion from SM VEV A. Zee Phys. Lett.95B,461(1980)
Glashow-Like Signatures
Glashow-Like Signatures g S. L. Glashow 1960
Glashow-Like Signatures g S. L. Glashow 1960
Glashow-Like Signatures g @ resonance, becomes dominant S. L. Glashow 1960
Glashow-Like Signatures g @ resonance, becomes dominant S. L. Glashow 1960 Chien-Yi Chen, P. S. Bhupal Dev, Amarjit Soni 2013’
Glashow-Like Signatures g @ resonance, becomes dominant S. L. Glashow 1960
Glashow-Like Signatures g @ resonance, becomes dominant S. L. Glashow 1960
Glashow-Like Signatures g @ resonance, becomes dominant S. L. Glashow 1960 Y Zee burst
Glashow-Like Signatures g @ resonance, becomes dominant S. L. Glashow 1960 Y Zee burst
Glashow-Like Signatures g @ resonance, becomes dominant S. L. Glashow 1960 Y Zee burst
Glashow-Like Signatures g @ resonance, becomes dominant S. L. Glashow 1960 Y Zee burst
Glashow-Like Signatures g @ resonance, becomes dominant S. L. Glashow 1960 Y Zee burst m=80.4 GeV
Glashow-Like Signatures g @ resonance, becomes dominant S. L. Glashow 1960 Y Zee burst m=100 GeV m=80.4 GeV
Glashow-Like Signatures g @ resonance, becomes dominant S. L. Glashow 1960 Y Zee burst Where to find these High Energy neutrinos? m=100 GeV m=80.4 GeV
Astrophysical Neutrino Sources
Astrophysical Neutrino Sources hadro-nuclear production p p p p p p p p
Astrophysical Neutrino Sources hadro-nuclear production p p p p p p p p
Astrophysical Neutrino Sources hadro-nuclear production p p p p p p p p
Astrophysical Neutrino Sources hadro-nuclear production p p p p X p p p p
Astrophysical Neutrino Sources hadro-nuclear production p p p p X p p p p
Astrophysical Neutrino Sources hadro-nuclear production p p p p X p p p p γ γ
Astrophysical Neutrino Sources hadro-nuclear production p p p p X p p p p μ ν γ γ
Astrophysical Neutrino Sources hadro-nuclear production p p p p X p p p p μ ν e γ γ ν ν
Astrophysical Neutrino Sources hadro-nuclear production p p p p X p p p p Starburst Galaxies, Galaxy Clusters/Groups μ ν e γ γ ν ν
Astrophysical Neutrino Sources photo-hadronic hadro-nuclear production production p p p p p p p p p γ X p p p p p γ p p Starburst Galaxies, p Galaxy Clusters/Groups p μ ν e γ γ ν ν
Astrophysical Neutrino Sources photo-hadronic hadro-nuclear production production p p p p p p p p p γ X p p p p p γ p p Starburst Galaxies, p Galaxy Clusters/Groups p μ ν e γ γ ν ν
Astrophysical Neutrino Sources photo-hadronic hadro-nuclear production production p p p p p p p p p γ X p p p p p γ p p Starburst Galaxies, p Galaxy Clusters/Groups p μ ν e γ γ ν ν
Astrophysical Neutrino Sources photo-hadronic hadro-nuclear production production p p p p p p p p p γ X p p p p p γ p n p Starburst Galaxies, p Galaxy Clusters/Groups p μ ν e γ γ ν ν
Astrophysical Neutrino Sources photo-hadronic hadro-nuclear production production p p p p p p p p p p γ X p p p p p γ p n p Starburst Galaxies, p Galaxy Clusters/Groups p μ ν e γ γ ν ν
Astrophysical Neutrino Sources photo-hadronic hadro-nuclear production production p p p p p p p p p p γ X p p p p p γ p n p Starburst Galaxies, p Galaxy Clusters/Groups p μ γ γ ν e γ γ ν ν
Astrophysical Neutrino Sources photo-hadronic hadro-nuclear production production p p p p p p p p p p γ X p p p p p γ p n p Starburst Galaxies, p Galaxy Clusters/Groups p μ γ γ μ ν ν e γ γ ν ν
Astrophysical Neutrino Sources photo-hadronic hadro-nuclear production production p p p p p p p p p p γ X p p p p p γ p n p Starburst Galaxies, p Galaxy Clusters/Groups p μ γ γ μ ν ν e e γ γ ν ν ν ν
Astrophysical Neutrino Sources photo-hadronic hadro-nuclear production production p p p p p p p p p p γ X p p p p p γ p n p Starburst Galaxies, p Galaxy Clusters/Groups p μ γ γ μ ν GRB, AGN, Radio ν Galaxies, Blazars, e supernovae ... e γ γ ν ν ν ν
Astrophysical Neutrino Sources photo-hadronic hadro-nuclear production production p p p p p p p p p p γ X p p p p p γ p n p Starburst Galaxies, p Galaxy Clusters/Groups p μ γ γ μ ν GRB, AGN, Radio ν Galaxies, Blazars, e supernovae ... e γ γ ν ν ν ν Charged Pions Decay
Astrophysical Neutrino Sources photo-hadronic hadro-nuclear production production p p p p p p p p p p γ X p p p p p γ p n p Starburst Galaxies, p Galaxy Clusters/Groups p μ γ γ μ ν GRB, AGN, Radio ν Galaxies, Blazars, e supernovae ... e γ γ ν ν ν ν Charged Pions Decay Neutrinos typically have 1-5% of proton energy Maximally:
Astrophysical Neutrino Sources photo-hadronic hadro-nuclear production production p p p p p p p p p p γ X p p p p p γ p n p Starburst Galaxies, p Galaxy Clusters/Groups p μ γ γ μ ν GRB, AGN, Radio ν Galaxies, Blazars, e supernovae ... e γ γ ν ν ν ν Charged Pions Decay How do we detect Neutrinos typically have 1-5% of proton energy them? Maximally:
IceCube Detector
IceCube Detector track
IceCube Detector track cascade
IceCube Detector track cascade Mechanism: Cherenkov radiation from interaction products: leptons and hadrons
IceCube Detector track cascade Mechanism: Cherenkov radiation from interaction products: leptons and hadrons nu e interactions dominates in special case
IC signal simulation The IceCube Collaboration, 2017, 2019
IC signal simulation The IceCube Collaboration, 2017, 2019
IC signal simulation HESE effective area, sum of cross sections for all the particles in the detector, an effective total cross section The IceCube Collaboration, 2017, 2019
IC signal simulation HESE effective area, sum of cross sections for all the particles in the detector, an effective total cross section T : Exposure time is 2635 days The IceCube Collaboration, 2017, 2019
IC signal simulation HESE effective area, sum of cross sections for all the particles in the detector, an effective total cross section T : Exposure time is 2635 days The IceCube Collaboration, 2017, 2019
IC signal simulation HESE effective area, sum of cross sections for all the particles in the detector, an effective total cross section T : Exposure time is 2635 days The IceCube Collaboration, 2017, 2019
IC signal simulation HESE effective area, sum of cross sections for all the particles in the detector, an effective total cross section T : Exposure time is 2635 days HESE muon neutrino effective area HESE e neutrino effective area The IceCube Collaboration, 2017, 2019
Recommend
More recommend