Lesson 5.2: Logarithmic Functions and Their Graphs If y = a x , then the inverse is x = a y An equivalent equation for x = a y is y = log a x y ( y log x x a ) a “is equivalent to” f(x) = log a x Logarithmic Function
y y log x x a a Ex 1: Evaluate. a)f(x) = log 2 x, when x = 32 y 5 y log 2 32 y 32 2 b)f(x) = log 3 x, when x = 1 y 0 y log 3 1 y 1 3 c)f(x) = log 4 x, when x = 2 y 1 y log 4 2 y 2 4 2
Common Log Function: f(x) = log 10 x Ex 2: Evaluate f(x) = log 10 x when 1 f x ( ) log a) x = 10 c) x = 1/3 10 3 f x ( ) log 10 10 0 f x ( ) .477 ( ) 1 f x b) x = 2.5 d) x = -2 f x ( ) log ( 2 ) f x ( ) log 10 2 5 . 10 0 398 f x ( ) . No Re al solution
Properties of Logarithms 1 .) log 1 0 0 ( Because 1 a ) a 1 ( Because a a ) 2 .) log a 1 a x log x 3 .) log a a x a a 4 .) If log x log y then x , y . a a
Ex 3: Use the properties of logs. a)Solve for x. log 2 x = log 2 3 x 3 If log x log y then x , y . a a b)Solve for x. log 4 4 = x x 1 log a a 1 x c)Simplify. log 5 5 x x log a a x log a x a x log 6 20 20 d ) 6
Natural Log Function When f(x) = e x , then the inverse is x = e y . f(x) = log e x = ln x Ex 4: Use log properties to simplify. 1 0 ) ln 1 a ) ln 3 0 c log e e 1 e 3 1 2 1 ( ) 2 d ) 2 ln e e 5 log 5 ln 5 b e ) e
Ex 5: Find the value of x for f(x) = ln x. ln2 0 693 . a)x = 2 ln . 0 3 1204 . b) x = 0.3 ln( 1 ) No Re al solution c) x = -1 2 0 881 ln( 1 ) . d) x = 1 + sqrt(2) Homework: p.386 #1-29 odd
Recommend
More recommend