x ray sources
play

X-ray sources Marat Gilfanov MPA, Garching X-ray sources X-ray - PowerPoint PPT Presentation

X-ray sources Marat Gilfanov MPA, Garching X-ray sources X-ray binaries accreting neutron stars and black holes accreting white dwarfs with stable hydrogen fusion on the surface (super- and ultra-soft X-ray sources) various faint


  1. X-ray sources Marat Gilfanov MPA, Garching

  2. X-ray sources � X-ray binaries – accreting neutron stars and black holes � accreting white dwarfs with stable hydrogen fusion on the surface (super- and ultra-soft X-ray sources) � various faint sources – CVs, active binaries, stars � hot ISM Marat Gilfanov Heidelberg, 16/7/2014

  3. Limitation X-ray observations are limited to E>0.5 keV due to absorption by ISM in the Milky Way and in the target galaxy. The effect is more severe in star-forming galaxies and for sources with soft spectra (kT<0.2-0.3 keV). Marat Gilfanov Heidelberg, 16/7/2014

  4. X-ray binaries L X = η ˙ c 2 M η ~ 0.1 − 0.2 M ~ 10 − 10 − 10 − 6 M Sun / yr ˙ L ~ 10 36 − 10 40 erg / s � accretion onto a black hole or a neutron star in a binary stellar system � accretion disk (Shakura-Sunyaev theory), outflows, jets Marat Gilfanov Heidelberg, 16/7/2014

  5. High- and low-mass X-ray binaries binary evolution calculations mass accretion rate Cyg X-1 Sco X-1 time from star-formation, Gyrs a typical HMXB formation of stars a typical LMXB t~10-100 Myrs t=0 t~1-10 Gyrs Δ t~0.1-1 Myr Δ t~0.1-1 Gyr Marat Gilfanov Heidelberg, 16/7/2014

  6. High- and low-mass X-ray binaries binary evolution calculations mass accretion rate Cyg X-1 Sco X-1 time from star-formation, Gyrs a typical HMXB formation of stars a typical LMXB t~10-100 Myrs t=0 t~1-10 Gyrs Δ t~0.1-1 Myr Δ t~0.1-1 Gyr scale with star formation scale with stellar mass Marat Gilfanov

  7. Time dependence – sketch L X , N X HMXB LMXB log(time) SF event Marat Gilfanov Heidelberg, 16/7/2014

  8. Time dependence – observations HMXB response to SF event LMXB specific frequency vs age 2 SNe rate 4278 4649 4552 1052 1.5 720 4365 4636 f XLF 4472 3923 1 4697 821 1380 4374 3585 1404 3115 5866 3379 0.5 4125 4382 0 5 10 15 20 Age (Gyr) stellar age, Gyrs time after SF event, Myrs Shtykovsky & MG 2005, 2007 Zhang, MG, Bogdan, 2012 Marat Gilfanov Heidelberg, 16/7/2014

  9. Time dependence – observations HMXB response to SF event LMXB specific frequency vs age 2 SNe rate 4278 4649 4552 1052 1.5 720 4365 4636 f XLF 4472 luminous 3923 1 4697 sources 821 1380 4374 3585 1404 3115 5866 3379 0.5 4125 4382 0 5 10 15 20 Age (Gyr) stellar age, Gyrs time after SF event, Myrs Shtykovsky & MG 2005, 2007 Zhang, MG, Bogdan, 2012 Marat Gilfanov Heidelberg, 16/7/2014

  10. Time dependence – theory o theory wrong? o observations wrong? (galaxy dating) Fragos et al., 2014 Marat Gilfanov Heidelberg, 16/7/2014

  11. Scaling relations for X-ray binaries HMXBs LMXBs 0.5-8 keV Luminosity, erg/s Grimm, MG, Sunyaev, 2003 MG, Grimm, Sunyaev, 2004 MG, 2004 Mineo, MG, Sunyaev, 2012 Zhang, MG, Bogdan, 2011 star-formation rate, M � /yr stellar mass, M � Marat Gilfanov Heidelberg, 16/7/2014

  12. Scaling relations for X-ray binaries HMXBs LMXBs 0.5-8 keV Luminosity, erg/s L X = α × SFR + β × M * Grimm, MG, Sunyaev, 2003 MG, Grimm, Sunyaev, 2004 MG, 2004 Mineo, MG, Sunyaev, 2012 Zhang, MG, Bogdan, 2011 star-formation rate, M � /yr stellar mass, M � Marat Gilfanov Heidelberg, 16/7/2014

  13. Scaling relations for X-ray binaries � for every 1 M � /yr of formation rate of new stars: ~7 bright HMXBs ~2.5 ⋄ 10 39 erg/s total luminosity on the time scale of <100 Myrs � for every 10 10 M � of (old) stellar mass: ~10 bright LMXBs ~10 39 erg/s total luminosity on the time scale of ~1-10 Gyrs Marat Gilfanov Heidelberg, 16/7/2014

  14. Total luminosity of star-forming galaxies 0.5-8 keV L X = 4 ⋅ 10 39 × SFR erg/s nearby galaxies ULIRGs CDF galaxies Luminosity, erg/s � ~2/3 due to HMXBs � rms~0.4 dex � calibrated to z~1 � no significant evolution to z~2-3 (constrained L X ~ 3.5 ⋅ 10 39 erg/s × SFR Mineo, MG, Lehmer et al., 2014 by CXB brightness) star-formation rate, M � /yr Marat Gilfanov Heidelberg, 16/7/2014

  15. X-ray luminosity functions different XLFs of LMXBs and HMXBs (different accretion regimes) total luminosity is determined by: • HMXB – brightest sources, log(L X )~40 • LMXBs – sources with log(L X )~38 MG, 2004 Mineo, MG, Sunyaev, 2011 Marat Gilfanov Heidelberg, 16/7/2014

  16. Ultra-luminous X-ray sources (ULX) � off-nuclear sources with luminosity log(L X )>39.5 � dominate total luminosity of star-forming galaxies � their nature still debated o super-Eddington accretion onto stellar mass BH o intermediate mass BH MG, 2004 Mineo, MG, Sunyaev, 2011 Eddington limit of 10 M � object Marat Gilfanov Heidelberg, 16/7/2014

  17. Spectra (HMXBs) pulsars BH ULX Marat Gilfanov Heidelberg, 16/7/2014

  18. Unresolved emission Average spectra of unresolved emission in galaxies of different types 10 -3 Massive ellipticals Normal ellipticals Late-type galaxies 10 -4 E 2 x F E / K-band 10 -5 10 -6 Bogdan & MG, 2011 10 -7 1 10 Energy, keV hot ISM faint XRBs, CVs, sub-keV kT stars, ISM(?) Marat Gilfanov Heidelberg, 16/7/2014

  19. Hot ISM in star-forming galaxies � apparent luminosity 0.5-2 keV gas ~ 6 ⋅ 10 38 erg/s × SFR L 0.5 − 2 keV � ~1/4-1/3 of HMXBs L X , 10 38 erg/s � scatter is real � kT~0.25 keV NH>10 21 cm -2 (intrinsic) bolometric and absorption corrections are large and not very reliable. However: Mineo, MG, Sunyaev, 2012 gas ~ 1.5 ⋅ 10 40 erg/s × SFR L bol star-formation rate, M � /yr Marat Gilfanov Heidelberg, 16/7/2014

  20. Faint objects star-forming galaxies elliptical galaxies 0.5-10 keV 10 41 10 39 Luminosity, erg/s 10 40 L 2-10keV , erg/s L 2-10keV , erg/s 10 39 10 38 10 38 10 37 10 37 Spiral Early-type Irregular Early-type in Virgo cluster 10 36 10 9 10 10 10 11 10 12 0.1 1 10 SFR, M sun/yr L K , L K sun star-formation rate, M � /yr stellar mass, M � young stellar objects accreting white dwarfs young stars active binaries ~5% of HMXBs ~3% of LMXBs Bogdan & MG, 2011 Marat Gilfanov Heidelberg, 16/7/2014

  21. Faint objects XLF (elliptical galaxies) Number of sources 0.5-10 keV Contribution to the luminosity ~3% Sazonov, Revnivtsev, MG et al., 2006 Marat Gilfanov Heidelberg, 16/7/2014

  22. Accreting nuclear burning WDs Population synthesis calculations soft X-ray luminoisty typical spectrum 25 log F λ ( erg cm − 2 sec − 1 cm − 1 ) 24 23 22 21 20 19 18 WD atmosphere (Rauch & Werner 2010) 17 black body data: Bogdan & MG, 2011, 2012 16 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 log( λ / ˚ A) log(time from starburst) Energy of hydrogen fusion ~10-30x Chen et al., 2014a,b times exceeds energy of accretion Marat Gilfanov Heidelberg, 16/7/2014

  23. Accreting nuclear burning WDs Population synthesis calculations soft X-ray luminoisty HeII ionizing luminoisty (E>4Ry) 32 . 0 log( L He /M ⋆ )(erg / s /M � ) 31 . 5 31 . 0 30 . 5 30 . 0 29 . 5 SP only a025 BP only 29 . 0 a050 BP only a025 combined 28 . 5 a050 combined data: Bogdan & MG, 2011, 2012 28 . 0 7 . 5 8 . 0 8 . 5 9 . 0 9 . 5 10 . 0 log( t/ yr) log(time from starburst) log(time from starburst) Energy of hydrogen fusion ~10-30x Chen et al., 2014a,b times exceeds energy of accretion Marat Gilfanov Heidelberg, 16/7/2014

  24. Theory vs. observations: problem at young ages too much soft X-ray too strong HeII λ 4686 line from ISM emission due to ionizing effect off WDs 0.5 WDs 0.4 He II 4686/H � 0.3 pAGB 0.2 stars 0.1 SDSS stacking data: Bogdan & MG, 2011, 2012 0 0.1 1 10 log(time from starburst) log(time from starburst) Age [Gyr] Either theory is wrong or galaxy dating Chen et al., 2014a,b Johansson et al., 2014 is wrong (cf pop.synth.of LMXBs) Marat Gilfanov Heidelberg, 16/7/2014

  25. Spectrum of a passive galaxy MG & Sunyaev, 2014, in prep. Chen et al., 2014a,b Marat Gilfanov

  26. Spectrum of a passive galaxy MG & Sunyaev, 2014, in prep. Chen et al., 2014a,b Marat Gilfanov

  27. Thank you!

Recommend


More recommend