x ray photon correlation spectroscopy xpcs at synchrotron
play

X-ray Photon Correlation Spectroscopy (XPCS) at Synchrotron and FEL - PowerPoint PPT Presentation

X-ray Photon Correlation Spectroscopy (XPCS) at Synchrotron and FEL sources Christian Gutt Department of Physics, University ofSiegen, Germany gutt@physik.uni-siegen.de Outline How to measure dynamics in condensedmatter systems


  1. X-ray Photon Correlation Spectroscopy (XPCS) at Synchrotron and FEL sources Christian Gutt Department of Physics, University ofSiegen, Germany gutt@physik.uni-siegen.de

  2. Outline • How to measure dynamics in condensedmatter systems • Coherence • X-ray speckle patterns • How to exploitX-ray intensityfluctuations • Examples for slow dynamics • XPCS at FEL sources

  3. How to measure dynamics in condensed matter systems

  4. How to measure dynamics in condensed matter systems Time domain % 𝐺 𝑅, 𝜐 = & ∑∑ exp (𝑗𝑅(𝑠 / (𝑢) − 𝑠 3 (𝑢 + 𝜐)) intermediate scattering function Frequency domain 𝑇 𝑅, 𝜕 = 8 𝐺 𝑅, 𝜐 exp 𝑗𝜕𝜐 𝑒𝜐 dynamic structure factor

  5. Elastic processes – waves, phonons... Restoring force – the system goes back to its previous configuration

  6. Relaxationalprocesses – diffusion, viscosity... No restoring force – the system evolves with time and does not come back

  7. An example – molecular dynamics simulation of liquid water Intermediate scattering function is complex (many correlation processes) and spans many orders of magntiude -> experiments in the time domain

  8. Laser Speckle

  9. Optical Speckles Incoherent light Coherent light Close up

  10. VLC movie

  11. Coherent scattering from disorder: Speckle sample with disorder (e.g. domains) • Incoherent Beam: Diffuse Scattering • Measures averages • Coherent Beam: Speckle • Speckle depends on exact arrangement • Speckel statistics encodes coherence properties

  12. XPCS – Theory I ( t ) I ( t + τ ) = E ( t ) E * ( t ) E ( t + τ ) E * ( t + τ ) Gaussian momentum theorem 2 = E ( t ) E * ( t ) E ( t + τ ) E * ( t + τ ) + E ( t ) E * ( t + τ ) I ( t ) I ( t ) g 1 ( τ ) I ( t ) I ( t + τ ) 2 = 1 + g 1 ( τ ) 2 I ( t )

  13. XPCS Theory N ∑ E ( t ) = A b j exp( iqr j ( t )) j = 1 N g 1 ( q , τ ) = A 2 ∑ b k b j exp( iq ( r j ( t ) − r k ( t + τ )) j , k = 1 Time dependent density correlation function

  14. Experiment I ( t ) I ( t + τ ) 2 = 1 + β g 1 ( τ ) 2 I ( t ) Speckle contrast < 1 Speckle blurring leads to small contrast Detector pixels P larger Partial coherenceof the than speckle size S x-ray source S ≈ λ D × L

  15. Signal to noise ratio SNR ∝ β High contrast Low contrast I ( t ) I ( t + τ ) 2 = 1 + β g 1 ( τ ) 2 I ( t )

  16. High coherence Low coherence

  17. 30 25 𝐷𝑝𝑜𝑢𝑠𝑏𝑡𝑢 = 𝛾 20 = 𝐽𝑛𝑏𝑦 − 𝐽𝑛𝑗𝑜 intensity 𝐽𝑛𝑏𝑦 + 𝐽𝑛𝑗𝑜 = 0 15 10 5 0 50 100 150 200 pixel 30 𝛾 = 𝐽𝑛𝑏𝑦 − 𝐽𝑛𝑗𝑜 25 𝐽𝑛𝑏𝑦 + 𝐽𝑛𝑗𝑜 = 1 intensity 20 15 10 5 0 0 50 100 150 200 pixel

  18. Coherence Spatial coherence Temporal coherence

  19. Young’s Double Slit Experiment Thomas Young, 1773-1829 • Light is a wave • Visibility (coherence) I I − v max min = I I + max min

  20. Spatial coherence in Young’s Double-Slit experiment Born and Wolf, Optics

  21. I I − v max min = I I + max min

  22. I I − v max min = I I + max min

  23. I I − v max min = I I + max min

  24. Fringe visibilityas a function of distance between the pinholes * ( r , r , ) V ( r , t ) V ( r , t ) Γ τ =< + τ > 1 2 1 2 No fringes visibility: „coherence length exceeded“

  25. Young’s experiment with X-rays I I − v max min = I I + max min Leitenberger et al. J. Synchrotron Rad. 11, 190 (2004)

  26. Young’s experiment at an XFEL (here LCLS) Vartaniants et al. PRL 2012

  27. I I − v max min = I I + max min Vartaniants et al. PRL 2012

  28. Vartaniants et al. PRL 2012

  29. A. Robert, SLAC

  30. Contrast (Visibility) β(Q) of a speckle pattern is determined by the coherence properties of the X-ray beam Γ r,𝜐 mutual coherence function (MCF) SAXS Q small Δ𝜐 = 𝑅 𝑠 H − 𝑠 % probing transverse coherence Γ(𝑠, 0) ≪ 𝜐 N 𝑑𝑙 L Δ𝜐 = 𝑅 𝑠 H − 𝑠 % /𝑑𝑙 L ~𝜐 N WAXS Q large probing transverse AND temporal coherence Γ 𝑠, Δ𝜐

  31. Signal to noise ratio SNR ∝ β High contrast Low contrast

  32. Speckle size needs to match pixel size of detector Large speckles Small speckles Good detector No good detector

  33. Brilliance of X-rays Sources Coherent Flux: F 0 = B λ 2 2 ( Δλ Δλ / λ ) (ESRF: ID10A F 0 ~10 10 ph/s)

  34. Examples

  35. Antiferromagnetic domain fluctuations in Chromium Spin density waves Domain wall Rotation of spin volumes O.G. Shpyrko et al. Nature 447, 68 (2007)

  36. Time

  37. Correlation functions Q ) 𝐺 𝑅, 𝑢 = exp (− 𝑢 /𝜐 P

  38. Quantum rotation of spin blocks Blue line: Thermally activated jumps over an energy barrier Red line: Quantum tunneling through an energy barrier 1 2

  39. How Solid are Glasses ? PABLO G. DEBENEDETTI AND FRANK H. STILLINGER , Nature 410, 259 (2001)

  40. Atomic dynamics in metallic glasses Q ) 𝐺 𝑅, 𝑢 = exp (− 𝑢 /𝜐 P B. Ruta et al. Phys. Rev. Lett. 109, 165701 (2012) B. Ruta et al. Nature Comm. 5, 3939 (2014)

  41. Reality check for glasses Fast relaxation dynamics exists below • the glass transition temperature Tg. Glasses are not completely frozen in • Stress dominates dynamics below Tg • B. Ruta et al. Phys. Rev. Lett. 109, 165701 (2012) B. Ruta et al. Nature Comm. 5, 3939 (2014)

  42. XPCS at diffraction limited strorage rings (DLSR) Coherent Flux: F 0 = B λ 2 2 ( Δλ Δλ / λ ) Increase of B by factor 50 - 100 up to 10.000 times faster time scale accessible in XPCS 𝜐 ~1/𝐶 H unusual scaling because XPCS correlates pairs of photons ESRF upgrade MBA lattice

  43. Problems that can be adressed at DLSR • Dynamics in the supercooled state • Dynamics in confinement • Domain fluctuations in hard condensed matter • Protein diffusion in cells • Kinetics of biomineralization processes • Liquids under extreme conditions (e.g. pressure) • Driven dynamics under external (B,E,T) fields • Local structures and their relaxations • ...

  44. XPCS at XFELs

  45. Serial mode Temporal resolution depends on rep rate of the machine

  46. Ultrafast XPCS using a split and delay line Delay times between 100 fs and 1 ns

  47. Measure speckle contrast as a function of pulse separation

  48. Ultrafast XPCS at XFEL – dynamics in extreme conditions Calculated correlation function supercooled liquid water Dynamics on time-scales ranging from 100 fs to 1000 ps 206 K 284 K Cooling

  49. J.A. Sellberg et al. Nature 510, 381 (2014)

  50. Water at T=1500 K, p = 12 Gpa at least for a few ps

  51. Pump-probe XPCS in Plasma Physics 1.275 1.27 1.265 1.26 1.255 0.05 0.5 Kluge, Gutt et al. Plasma Physics 2014

  52. The end

Recommend


More recommend