wimps and lipss wimps and lipss
play

WIMPS and LIPSS WIMPS and LIPSS A. Afanasev Afanasev, O.K. Baker - PowerPoint PPT Presentation

WIMPS and LIPSS WIMPS and LIPSS A. Afanasev Afanasev, O.K. Baker (contact person), K. McFarlane , O.K. Baker (contact person), K. McFarlane A. Hampton University Hampton University for the LIPSS collaboration for the LIPSS collaboration


  1. WIMPS and LIPSS WIMPS and LIPSS A. Afanasev Afanasev, O.K. Baker (contact person), K. McFarlane , O.K. Baker (contact person), K. McFarlane A. Hampton University Hampton University for the LIPSS collaboration for the LIPSS collaboration CASA seminar CASA seminar Feb 2, 2006 Feb 2, 2006

  2. outline outline PVLAS results and implications PVLAS results and implications – overview only overview only – previous experimental studies previous experimental studies – how did all previous searches miss it? how did all previous searches miss it? – LIPSS (light light pseudoscalar pseudoscalar particle search particle search) ) LIPSS ( – plans and history plans and history – summary summary

  3. PVLAS results PVLAS results based upon experimental idea of L. Maiani Maiani, , based upon experimental idea of L. R. Petronzio Petronzio, and E. , and E. Zavattini Zavattini, PLB 175, 359 , PLB 175, 359 R. (1986) (1986)

  4. Dichroism Dichroism rotation of polarization plane rotation of polarization plane Maiani et.al et.al., ., Phy Phy. . Lett Lett. B175 (1986); . B175 (1986); www.ts.infn.it/experiments/pvlas www.ts.infn.it/experiments/pvlas Maiani M: inverse inverse M: coupling coupling K m :inverse inverse K m : compton compton wavelength wavelength k: light light k: wavenumber wavenumber L: magnetic L: magnetic field region field region length length 2 ⎧ ⎫ ⎡ ⎤ ⎛ ⎞ 2 ⎛ ⎞ 2 ⎪ ⎪ ⎛ ⎞ ⎜ ⎟ N: number of number of N: B L ⎢ kL k ⎥ N ⎜ ⎟ ε = − − − ⎜ ⎟ ⎨ ⎬ ext sin 1 1 traversals traversals ⎜ ⎟ ⎜ ⎟ ⎢ ⎥ ⎜ ⎟ ⎝ ⎠ 2 ⎡ ⎤ ⎝ ⎠ 4 M 2 K ⎪ ⎪ 2 LK ⎝ ⎠ ⎣ ⎦ m ⎩ ⎭ ⎢ m ⎥ ⎣ 4 k ⎦

  5. Dichroism Dichroism rotation of polarization plane rotation of polarization plane hep- -ex/0507061 (2005); ex/0507061 (2005); Phys Rev D47, 3707 (1993) Phys Rev D47, 3707 (1993) hep

  6. ellipticity ellipticity dispersion; photon- -axion axion dispersion; photon Maiani et.al et.al., ., Phy Phy. . Lett Lett. B175 (1986); . B175 (1986); www.ts.infn.it/experiments/pvlas www.ts.infn.it/experiments/pvlas Maiani M: inverse inverse M: coupling coupling K m :inverse inverse K m : compton compton wavelength wavelength k: light light k: wavenumber wavenumber L: magnetic L: magnetic field region field region length length ⎧ ⎫ ⎡ ⎤ ⎛ ⎞ 2 ⎛ ⎞ ⎜ ⎟ ⎪ ⎪ ⎢ k ⎥ ⎜ ⎟ − − sin kL 1 1 N: number of number of ⎜ ⎟ N: ⎜ ⎟ ⎪ ⎪ ⎢ ⎥ ⎜ ⎟ ⎝ ⎠ K traversals traversals ⎛ ⎞ ⎪ ⎪ 2 ⎝ ⎠ ⎣ ⎦ m B kL ⎜ ⎟ ψ = − ⎨ ⎬ ext 1 ⎜ ⎟ 2 2 2 ⎝ 4 ⎠ M K ⎪ LK ⎪ m m ⎪ ⎪ 2 k ⎪ ⎪ ⎩ ⎭

  7. ellipticity ellipticity dispersion: photon- -axion axion dispersion: photon ex/0507061 (2005); Phys Rev D47, 3707 (1993) Phys Rev D47, 3707 (1993) hep- -ex/0507061 (2005); hep

  8. PVLAS setup PVLAS setup 6 T ; 1 meter long dipole magnet 1064 nm ; 0.1 W laser 60 km path length in magnet using 6 meters long optical cavity cryostat rotation 0.3 Hz

  9. PVLAS results PVLAS results zavattini et al; see zavattini et al; see www.ts.infn.it/experiments/pvlas www.ts.infn.it/experiments/pvlas B: 5 T 5 T B: L: 1 m 1 m L: ω : ω : 1.2 1.2 eV eV µ ) (1.064 µ ) (1.064 OC: 6.3 m 6.3 m OC: N: 44000 44000 N:

  10. PVLAS example data PVLAS example data www.ts.infn.it/experiments/pvlas www.ts.infn.it/experiments/pvlas

  11. PVLAS results may be PVLAS results may be explained by a region . . . explained by a region . . . 6 < g < 1.0 x 10 5 GeV -6 -5 -1 1 1.7 x 10 - < g < 1.0 x 10 - GeV - 1.7 x 10 0.7 < m < 1.7 meV meV 0.7 < m < 1.7 PVLAS effect is 10 4 stronger than QED (Euler-Heisenberrg) prediction!

  12. interpretation interpretation light pseudoscalar pseudoscalar particle particle light weakly interacting weakly interacting (weakly interacting massive particle) (weakly interacting massive particle)

  13. pseudoscalar coupling coupling pseudoscalar pseudoscalar particle coupling to photons particle coupling to photons pseudoscalar ϕ ) v v 1 g µν = − ϕ = ⋅ L F F E B ϕγγ µν 4 M 4 in present case, use laser light and magnetic field in present case, use laser light and magnetic field light polarization in direction of magnetic field light polarization in direction of magnetic field PVLAS claims to see effect in both dichroism PVLAS claims to see effect in both dichroism and and ellipticity ellipticity (using (using same apparatus). same apparatus). we want to test this result in a completely independent way we want to test this result in a completely independent way

  14. Axion interpretation? interpretation? Axion A. Ringwald A. Ringwald; hep ; hep- -ph/0511184 ph/0511184 K. Zioutas Zioutas et.al et.al., PRL 94, 121301 (2005) ., PRL 94, 121301 (2005) K.

  15. possibilities . . . possibilities . . . L. Rosenberg SLAC Summer Institute 2004 L. Rosenberg SLAC Summer Institute 2004 Peccei, Quin (1977); S. Weinberg (1978); F. Wilczek (1978)

  16. matter/energy budget of universe matter/energy budget of universe Stars and galaxies are only ~0.5% Stars and galaxies are only ~0.5% Neutrinos are ~0.3– –10% 10% Neutrinos are ~0.3 Rest of ordinary matter (electrons and protons) Rest of ordinary matter (electrons and protons) are ~5% are ~5% Dark Matter ~30% Dark Matter ~30% Dark Energy ~65% Dark Energy ~65% Anti- -Matter 0% Matter 0% Anti axion a dark matter candidate

  17. search strategies to date search strategies to date two broad classes of axion axion searches searches two broad classes of – detect relic (big detect relic (big- -bang leftover), or solar, or stellar bang leftover), or solar, or stellar axions axions – – produce and then detect produce and then detect axions axions in terrestrial in terrestrial expt expt – more difficult, in general, since there are two factors of small more difficult, in general, since there are two factors of small couplings couplings LIPSS uses this strategy LIPSS uses this strategy BFRT collaboration also used this strategy BFRT collaboration also used this strategy

  18. relic axions axions relic microwave cavities microwave cavities

  19. relic axions axions relic axions created created axions moments after moments after the big bang. the big bang. thermalized thermalized over time over time mass range mass range must be must be consistent with consistent with astrophysical astrophysical observables observables

  20. microwave cavity technique microwave cavity technique R. Bradley et al, Rev. Mod. Phys. 75, 777(2003) R. Bradley et al, Rev. Mod. Phys. 75, 777(2003)

  21. microwave cavity search: example microwave cavity search: example Sikivie (1983); Ansel’m (1985); van Bibber et al (1987)

  22. microwave cavity search: example microwave cavity search: example

  23. microwave cavities microwave cavities V: cavity volume V: cavity volume m (f) mass (coupling) m (f) mass (coupling) B: magnetic field B: magnetic field R: galactic halo axion axion density on Earth density on Earth R: galactic halo C: mode dependent constant (0.6) C: mode dependent constant (0.6) Q L : cavity’ ’s loaded quality factor s loaded quality factor Q L : cavity 6 ) Q a : galactic halo axion axion quality factor (10 quality factor (10 6 ) Q a : galactic halo P N : average thermal noise power P N : average thermal noise power T s cavity temperature plus noise ‘ ‘temperature temperature’ ’ T s cavity temperature plus noise

  24. data taking – – microwave cavities microwave cavities data taking

  25. microwave cavity experiments find no microwave cavity experiments find no evidence for relic axions axions in parameter space in parameter space evidence for relic indicated indicated

  26. solar and stellar axions axions solar and stellar helioscope search search helioscope supernova explosions supernova explosions

  27. axions from the sun from the sun – axions CAST – CAST

  28. CAST experiment CAST experiment decommissioned LHC test magnet decommissioned LHC test magnet – L = 10 m ; B = 9 T L = 10 m ; B = 9 T – moving platform moving platform – up to 50 days/year of alignment up to 50 days/year of alignment – 4 magnet bores, for x- -ray detection ray detection 4 magnet bores, for x � keV axions � � keV solar temperature � – solar temperature keV axions keV x x- -rays rays – 3 x ray detectors 3 x ray detectors x ray focussing focussing system to increase S/N ratio system to increase S/N ratio x ray

  29. CAST technology CAST technology

  30. CAST finds no evidence to date for solar CAST finds no evidence to date for solar axions in parameter space indicated in parameter space indicated axions

  31. astrophysical bounds astrophysical bounds L. Rosenberg, SLAC Summer Institute 2004 L. Rosenberg, SLAC Summer Institute 2004 Ellis and Olive, 1987; Raffelt and Seckel, 1988; Turner, 1988, etc

  32. CAST finds no evidence to date for solar axions axions in in CAST finds no evidence to date for solar parameter space indicated parameter space indicated SN1987A does not rule out PVLAS result SN1987A does not rule out PVLAS result

Recommend


More recommend