wigner distributions and how they relate to the light
play

Wigner Distributions and How They Relate to the Light Field - PowerPoint PPT Presentation

Wigner Distributions and How They Relate to the Light Field Zhengyun Zhang, Marc Levoy Stanford University IEEE International Conference on Computational Photography 2009 Light Fields and Wave Optics Zhengyun Zhang, Marc Levoy Stanford


  1. Observable Light Field 2 � � � l ( T ) U ( x ) T ( x − s ) e − j 2 π u λ x dx � � obs ( s, u ) = � � � � l ( T ) s, u − s, u � � � � obs ( s, u ) = W U ⊗ W T λ λ Wigner distribution of wave function

  2. Observable Light Field 2 � � � l ( T ) U ( x ) T ( x − s ) e − j 2 π u λ x dx � � obs ( s, u ) = � � � � l ( T ) s, u − s, u � � � � obs ( s, u ) = W U ⊗ W T λ λ Wigner distribution Wigner distribution of wave function of aperture window

  3. Observable Light Field 2 � � � l ( T ) U ( x ) T ( x − s ) e − j 2 π u λ x dx � � obs ( s, u ) = � � � � blur trades off resolution in position with direction l ( T ) s, u − s, u � � � � obs ( s, u ) = W U ⊗ W T λ λ Wigner distribution Wigner distribution of wave function of aperture window

  4. Observable Light Field at zero wavelength limit (regime of ray optics) l ( T ) s, u � � − s, u � � obs ( s, u ) = W U W T ⊗ λ λ Wigner distribution Wigner distribution of wave function of aperture window

  5. Observable Light Field at zero wavelength limit (regime of ray optics) l ( T ) s, u � � obs ( s, u ) = W U ⊗ δ ( − s, u ) λ Wigner distribution of wave function

  6. Observable Light Field at zero wavelength limit (regime of ray optics) l ( T ) s, u � � obs ( s, u ) = W U λ observable light field and Wigner equivalent!

  7. Observable Light Field • observable light field is a blurred Wigner distribution with a modified coordinate system • blur trades off resolution in position with direction • Wigner distribution and observable light field equivalent at zero wavelength limit

  8. Application - Refocusing u s light field

  9. Application - Refocusing Isaksen et. al u 2000 s light field

  10. Application - Refocusing Isaksen et. al u 2000 s light field image at z=0

  11. Application - Refocusing Isaksen et. al u 2000 s light field image at z=z 0

  12. Application - Refocusing Isaksen et. al u f u 2000 light s f s light Fourier field field spectrum

  13. Application - Refocusing Isaksen Ng et. al u f u 2005 2000 light s f s light Fourier field field spectrum

  14. Application - Refocusing Isaksen Ng et. al u f u 2005 2000 light s f s light Fourier field field spectrum image at z=0

  15. Application - Refocusing Isaksen Ng et. al u f u 2005 2000 light s f s light Fourier field field spectrum image at z=z 0

  16. Application - Refocusing Isaksen Ng et. al u f u 2005 2000 light s f s light Fourier field field spectrum f ξ ξ Wigner ambiguity f x x Fourier distribution function

  17. Application - Refocusing Isaksen Ng et. al u f u 2005 2000 light s f s light Fourier field field spectrum image at z=0 f ξ ξ Wigner ambiguity f x x Fourier distribution function

  18. Application - Refocusing Isaksen Ng et. al u f u 2005 2000 light s f s light Fourier field field spectrum image at z=z 0 f ξ ξ Wigner ambiguity f x x Fourier distribution function

  19. Application - Refocusing Isaksen Ng et. al u f u 2005 2000 light s f s light Fourier field field spectrum image at z=0 f ξ ξ Wigner ambiguity f x x Fourier distribution function

  20. Application - Refocusing Isaksen Ng et. al u f u 2005 2000 light s f s light Fourier field field spectrum image at z=z 0 f ξ ξ Wigner ambiguity f x x Fourier distribution function

  21. Application - Refocusing Isaksen Ng et. al u f u 2005 2000 light s f s light Fourier field field spectrum Papoulis f ξ ξ 1974 Wigner ambiguity f x x Fourier distribution function

  22. Application - Wavefront Coding Dowski and Cathey 1995 same aberrant blur regardless of depth of focus

  23. Application - Wavefront Coding Dowski and Cathey 1995 point in scene same aberrant blur regardless of depth of focus

  24. Application - Wavefront Coding Dowski and Cathey 1995 point cubic in scene phase plate same aberrant blur regardless of depth of focus

  25. Application - Wavefront Coding Dowski and Cathey 1995 point small change cubic in scene in blur shape phase plate same aberrant blur regardless of depth of focus

  26. Application - Wavefront Coding slices corresponding to various depths ambiguity function

  27. Application - Wavefront Coding

  28. Application - Wavefront Coding u s point

  29. Application - Wavefront Coding u u s s point before phase plate

  30. Application - Wavefront Coding u u s s point after phase plate

  31. Application - Wavefront Coding u u u s s s at image point after phase plate plane

  32. Application - Wavefront Coding u u u s s s at image point after phase plate plane

  33. Application - Wavefront Coding u • refocusing in ray space is shearing • shearing of a parabola results in translation s • blur shape invariant to refocusing

Recommend


More recommend