What can we learn about Theoretical Physics with Future Gravitational Wave Detections? Nicolas Yunes e X treme Gravity Institute Montana State University GC2018, Yukawa Institute for Theoretical Physics March 2 nd , 2018
e X treme Gravity Institute + + + Now accepting Co-Chair of NASA PCOS GWSIG & Applications for our Physics PhD Fundamental Physics in LISA Consortium Program!! Yunes 2
Yunes 3
Nico’s Adinkra Yunes Nico’s Adinkra 4
Cleaning up the Adinkra Gravity Theory Experimental Gravitational Relativity Waves What can we learn about theoretical physics from future GW observations? Yunes 5
Roadmap 3G Physics Multi-Band I-Love-Q Yunes 6
2G goes to 3G GEO LHO KAGRA Virgo/AdV LLO Ligo-India Yunes 7
3G Detectors 3G Physics Multi-Band I-Love-Q Yunes 8
The Parameterized post-Einsteinian Framework h GR ( f ) (1 + α f a ) e i β f b h ( f ) = ˜ ˜ [Yunes & Pretorius, PRD 2009] [Cornish et al PRD 84 (’11), Sampson et al PRD 87 (’13), Sampson, et al PRD 88 (’13), Sampson et al PRD 89 (’14), Yunes, Yagi & Pretorius (’16)] Yunes 9
Future ppE Constraints [Chamberlain & Yunes, PRD ’17] h GR ( f ) (1 + α f a ) e i β f b h ( f ) = ˜ ˜ Anomalous Scalar Dipole Lorentz Parity Acceleration Radiation Violation Violation 3G Physics Multi-Band I-Love-Q Yunes 10
Fractional Improvement with Detector Upgrade [Chamberlain & Yunes, PRD ’17] h GR ( f ) (1 + α f a ) e i β f b h ( f ) = ˜ ˜ Anomalous Scalar Dipole Lorentz Parity Acceleration Radiation Violation Violation 3G Physics Multi-Band I-Love-Q Yunes 11
Future Constraints on Graviton Mass Current Bound 10 − 22 Case Study: Massive Graviton 10 − 23 Constraint on m g [eV/c 2 ] Ground-based Space-based 10 − 24 h GR ( f ) (1 + α f a ) e i β f b h ( f ) = ˜ ˜ 10 − 25 β = π 2 D M z 10 − 26 1 + z m 2 NSNS EMRI g lBHNS IMRI lBHBH IMBH BHBH SMBH 10 − 27 GW150914 O + E D 1 2 5 . y A A A 10 5 times better than o C - G A V T 2 2 2 I N N N E L current bounds!! a Instrument [Chamberlain & Yunes, PRD ’17] 3G Physics Multi-Band I-Love-Q Yunes 12
Other Future Constraints [Chamberlain & Yunes, PRD ’17] 3G Physics Multi-Band I-Love-Q Yunes 13
Roadmap 3G Physics Multi-Band I-Love-Q Yunes 14
Multi-Band Events GW150914 3G Physics Multi-Band I-Love-Q Yunes 15
Future Multi-Band Constraints Case Study: Dipole Radiation h GR ( f ) (1 + α f a ) e i β f b ˜ h ( f ) = ˜ β = − 3 224 η 2 / 5 B 10 6 times better than current bounds!! [Barausse, Yunes, Chamberlain, PRL ’16] 3G Physics Multi-Band I-Love-Q Yunes 16
Roadmap 3G Physics Multi-Band I-Love-Q Yunes 17
Gravitational Waves Will Find Love GWs and g -rays!! GWs test-particles tidal deformations merger Gravitational Waves from Neutron Star Binaries depend on ( l 1 ,Q 1, l 2 ,Q 2 ) 3G Physics Multi-Band I-Love-Q Yunes 18
Somebody will find I Option 1: Use NICER Option 2: Use Binary Pulsars Either NICER or Binary Pulsars will measure the Moment of Inertia 3G Physics Multi-Band I-Love-Q Yunes 19
I-Love-Q Relations [Yagi & Yunes, Science 341 2013, Yagi & Yunes, PRD 88 2013] The moment of inertia, quadrupole moment and Love number satisfy Universal, EoS-independent relations! 3G Physics Multi-Band I-Love-Q Yunes 20
I-Love-Q Test I-Love test leads to strong constraints on modified gravity [Yagi & Yunes, Science 341 2013, Yagi & Yunes, PRD 88 2013, Gupta et al, CQG 2017] 3G Physics Multi-Band I-Love-Q Yunes 21
Conclusions 3G Detectors Will Allow for Precision Tests of GR If it bleeds, (extreme gravity, clean, localized, constraint maps) we can kill it! Multi-Band Observations Will Be Ultimate Test (requires synchronized LISA-Earth Detector effort) I-Love-Q Tests Will Allow Different And Stringent Tests (constraints on parity violation and Lorentz violation) Important Topics I Had To Leave Out: Constraints on Parity violation, on Lorentz violation Quasinormal BH (“hair”) tests Constraints on additional polarizations Yunes 22
Thank You Yunes 23
Recommend
More recommend