what are the pcbs
play

What are the PCBs Isomers (1-46) Congeners (209) 3 2 2 3 - PDF document

CEE 577 Lecture #36 4/17/2013 Updated: 17 April 2013 Print version Lecture #36 Toxics: PCBs in the Great Lakes (Jeremiason et al., 1994) David Reckhow CEE 577 #36 1 Homologs (11) What are the PCBs Isomers (1-46) Congeners (209) 3 2 2


  1. CEE 577 Lecture #36 4/17/2013 Updated: 17 April 2013 Print version Lecture #36 Toxics: PCBs in the Great Lakes (Jeremiason et al., 1994) David Reckhow CEE 577 #36 1 Homologs (11) What are the PCBs Isomers (1-46) Congeners (209) 3 2 2 3  Biphenyl 1 1’ 4 4’ 6’ 5’ 5 6 Cl  2,2’ ‐ Dichlorobiphenyl  2,3’ ‐ Dichlorobiphenyl Cl Cl Cl David Reckhow CEE 577 #36 2 1

  2. CEE 577 Lecture #36 4/17/2013 History  1930: Monsanto is major US producer  1970: Monsanto decides to sell PCBs only for closed use  1975: NY State warns public about salmon and bass in Hudson  1979: PCB manufacture banned in US  1982: NY State begins dredging “hot spots”  1990: all PCB ‐ containing equipment must be removed from US public buildings David Reckhow CEE 577 #36 3 Arochlor Mixtures  Arochlor 12xx (xx=% chlorine)  1221: 50% Cl 1 , 35% Cl 2  1232: 26% Cl 1 , 29% Cl 2 , 24% Cl 3  1242: 13% Cl 2 , 45% Cl 3 , 31% Cl 4  1248: 49% Cl 4 , 27% Cl 5  1254: 15% Cl 4 , 53% Cl 5 , 26% Cl 6  1260: 12% Cl 5 , 42% Cl 6 , 38% Cl 7  1262: no data  1268: no data David Reckhow CEE 577 #36 4 2

  3. CEE 577 Lecture #36 4/17/2013 PCBs in the Lake Superior  Reference: “PCBs in Lake Superior, 1978 ‐ 1992: Decrease in Water Concentrations Reflect Loss by Volatilization,” by Jeremiason, Hornbuckle and Eisenreich, Environmental Science and Technology, 28:903 (1994) St. Mary’s River David Reckhow CEE 577 #36 5 Empirical Models       0 20 . t PCB PCB e 25 25 o       0 22 . t PCB PCB e 82 82 o  Data tell us that about 26,500 kg has been lost from the water column between 1980 and 1992 David Reckhow CEE 577 #36 6 3

  4. CEE 577 Lecture #36 4/17/2013 Loss rate and K ow ’s Log Kow -0.6 -0.5 -0.4 k (/yr) k (yr-1) -0.3 k-regr. -0.2 -0.1 0 4.5 5 5.5 6 6.5 7 7.5 David Reckhow CEE 577 #36 7 Areal Sediment Burden (mass)  Estimated at 4900 kg in 1986  using data from sediment cores  relatively small compared to total lost from water column (26,500 kg from ‘80 to ‘92)    1    PCB PCB ( ) z areal i i s i Thickness of depth PCB conc. (ng/g-dry increment “i” sediment) in depth increment “i” Porosity of increment “i” David Reckhow CEE 577 #36 8 4

  5. CEE 577 Lecture #36 4/17/2013 Inputs  W Qc    Riverine  13 54 10 . x L yr / 2 ng L /   Known Q 110 kg yr /  Estimate c from analysis of pristine rain  Other  estimates from industrial, municipal, (urban) runoff and storm sewer flows gives a combined total of about 40 kg/yr David Reckhow CEE 577 #36 9 Inputs (cont.)  Direct Atmospheric deposition Surface  wet deposition precipitation Area   F PCB P SA ( ) wet T rain ,  10 2 2 ng L / ( 76 cm )8. 21 10 x m   dry deposition 125 kg yr /  calculated for 4 seasons, then averaged Dry particle deposition velocity (0.2 cm/s)  Fraction of year when it   ( ) F PCB V SA f dry T air , d d is not precipitating (0.9)  32 kg yr / David Reckhow CEE 577 #36 Fraction of PCBs associated with particles 10 5

  6. CEE 577 Lecture #36 4/17/2013 Outputs  Outflow  St. Mary’s River outflow   13 W 71 10 . x L yr / ( . 084 ng L / ) 60 kg yr /  Burial (net loss to sedimentation)  estimated at 110 kg/yr from sediment cores collected in 1986 and 1990  Net Volatilization  true volatilization minus gas absorption  assumed to account for missing flux David Reckhow CEE 577 #36 11 Reactions  NONE!  “evidence does not exist to support PCB degradation in Lake Superior or any other oligotrophic, aerobic system exhibiting low ambient concentrations” David Reckhow CEE 577 #36 12 6

  7. CEE 577 Lecture #36 4/17/2013 PCB Mass Balance in Lake Superior, 1986 Atmosphere Net Volatilization Atmospheric Deposition ~200 kg ~1900 kg/yr Wet 125 kg/yr Dry 32 kg/yr Other discharges ~40 kg/yr Particle Rivers Outflow Settling ~110 kg/yr ~60 kg/yr ~3000 kg/yr Water Column ~10,100 kg Recycling ~2890 kg/yr Sediment ~4900 kg Burial ~110 kg/yr David Reckhow CEE 577 #36 13 Congener ‐ specific sedimentation  Calculation of first ‐ order net sedimentation rate Mass sedimentation rate (mg/cm 2 /yr) Inventory (or areal TSS)   W sed f   Fraction particulate   INV p  w k sed RR Recycling ratio = downward flux (from sed trap) divided by the accumulation in the sediment David Reckhow CEE 577 #36 14 7

  8. CEE 577 Lecture #36 4/17/2013 Sedimentation vs overall loss rate Log Kow -0.6 -0.5 -0.4 k (yr-1) k (/yr) -0.3 ksed (yr-1) k-regr. -0.2 -0.1 0 4.5 5 5.5 6 6.5 7 7.5 David Reckhow CEE 577 #36 15 Two Film Volatilization Model K  Jeremiason’s equation  ol k f vol w h v  Same as Chapra’s  v k H f v d 1 1  Where: 1 RT 1   K k H k ol a w David Reckhow CEE 577 #36 16 8

  9. CEE 577 Lecture #36 4/17/2013 Estimating 2 ‐ film parameters  The gas film coefficient   k 0 2 . u 0 3 . a H O , 10 2   0 61 . D    PCB air , k k   a PCB , a H O ,   D 2  The liquid film coefficient H O air , 2  1 64 . k 0 45 10 . u  w CO ,   0 5 . 2 Sc    PCB   k k w PCB , w CO ,   Sc 2 CO 2 Kinetic viscosity: molecular diffusivity Schmidt Number David Reckhow CEE 577 #36 17 Volatilization vs overall loss rate Log Kow -0.7 -0.6 -0.5 k (yr-1) k (/yr) -0.4 kvol (yr-1) k-regr. -0.3 kvol-regr. -0.2 -0.1 0 4.5 5 5.5 6 6.5 7 7.5 David Reckhow CEE 577 #36 18 9

  10. CEE 577 Lecture #36 4/17/2013  To next lecture David Reckhow CEE 577 #36 19 10

Recommend


More recommend