well ordering principles omega beta models
play

Well-Ordering Principles, Omega & Beta Models Michael Rathjen - PowerPoint PPT Presentation

Well-Ordering Principles, Omega & Beta Models Michael Rathjen Department of Pure Mathematics, University of Leeds West Yorkshire Model Theory and Proof Theory of Arithmetic A Memorial Conference in Honour of Henryk Kotlarski and Zygmunt


  1. O. Veblen, 1908 Veblen extended the initial segment of the countable for which fundamental sequences can be given effectively. • He applied two new operations to continuous increasing functions on ordinals: • Derivation • Transfinite Iteration W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  2. O. Veblen, 1908 Veblen extended the initial segment of the countable for which fundamental sequences can be given effectively. • He applied two new operations to continuous increasing functions on ordinals: • Derivation • Transfinite Iteration • Let ON be the class of ordinals. A (class) function f : ON → ON is said to be increasing if α < β implies f ( α ) < f ( β ) and continuous (in the order topology on ON ) if f ( lim ξ<λ α ξ ) = lim ξ<λ f ( α ξ ) holds for every limit ordinal λ and increasing sequence ( α ξ ) ξ<λ . W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  3. Derivations • f is called normal if it is increasing and continuous. W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  4. Derivations • f is called normal if it is increasing and continuous. • The function β �→ ω + β is normal while β �→ β + ω is not continuous at ω since lim ξ<ω ( ξ + ω ) = ω but ( lim ξ<ω ξ ) + ω = ω + ω . W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  5. Derivations • f is called normal if it is increasing and continuous. • The function β �→ ω + β is normal while β �→ β + ω is not continuous at ω since lim ξ<ω ( ξ + ω ) = ω but ( lim ξ<ω ξ ) + ω = ω + ω . • The derivative f ′ of a function f : ON → ON is the function which enumerates in increasing order the solutions of the equation f ( α ) = α, also called the fixed points of f . W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  6. Derivations • f is called normal if it is increasing and continuous. • The function β �→ ω + β is normal while β �→ β + ω is not continuous at ω since lim ξ<ω ( ξ + ω ) = ω but ( lim ξ<ω ξ ) + ω = ω + ω . • The derivative f ′ of a function f : ON → ON is the function which enumerates in increasing order the solutions of the equation f ( α ) = α, also called the fixed points of f . • If f is a normal function, { α : f ( α ) = α } is a proper class and f ′ will be a normal function, too. W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  7. A Hierarchy of Ordinal Functions • Given a normal function f : ON → ON , define a hierarchy of normal functions as follows: W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  8. A Hierarchy of Ordinal Functions • Given a normal function f : ON → ON , define a hierarchy of normal functions as follows: • f 0 = f W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  9. A Hierarchy of Ordinal Functions • Given a normal function f : ON → ON , define a hierarchy of normal functions as follows: • f 0 = f ′ • f α + 1 = f α W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  10. A Hierarchy of Ordinal Functions • Given a normal function f : ON → ON , define a hierarchy of normal functions as follows: • f 0 = f ′ • f α + 1 = f α • f λ ( ξ ) = ξ th element of � { Fixed points of f α } for λ limit . α<λ W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  11. The Feferman-Schütte Ordinal Γ 0 • From the normal function f we get a two-place function, ϕ f ( α, β ) := f α ( β ) . We are interested in the hierarchy with starting function ℓ ( α ) = ω α . f = ℓ, W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  12. The Feferman-Schütte Ordinal Γ 0 • From the normal function f we get a two-place function, ϕ f ( α, β ) := f α ( β ) . We are interested in the hierarchy with starting function ℓ ( α ) = ω α . f = ℓ, • The least ordinal γ > 0 closed under ϕ ℓ , i.e. the least ordinal > 0 satisfying ( ∀ α, β < γ ) ϕ ℓ ( α, β ) < γ is the famous ordinal Γ 0 which Feferman and Schütte determined to be the least ordinal ‘unreachable’ by predicative means . W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  13. ATR 0 and ϕ X 0 W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  14. ATR 0 and ϕ X 0 Theorem: (Friedman, unpublished) Over RCA 0 the following are equivalent: W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  15. ATR 0 and ϕ X 0 Theorem: (Friedman, unpublished) Over RCA 0 the following are equivalent: ATR 0 1 W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  16. ATR 0 and ϕ X 0 Theorem: (Friedman, unpublished) Over RCA 0 the following are equivalent: ATR 0 1 ∀ X [ WO ( X ) → WO ( ϕ X 0 )] . 2 W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  17. ATR 0 and ϕ X 0 Theorem: (Friedman, unpublished) Over RCA 0 the following are equivalent: ATR 0 1 ∀ X [ WO ( X ) → WO ( ϕ X 0 )] . 2 W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  18. ATR 0 and ϕ X 0 Theorem: (Friedman, unpublished) Over RCA 0 the following are equivalent: ATR 0 1 ∀ X [ WO ( X ) → WO ( ϕ X 0 )] . 2 • Friedman’s proof uses computability theory and also some proof theory. Among other things it uses a result which states that if P ⊆ P ( ω ) × P ( ω ) is arithmetic, then there is no sequence { A n | n ∈ ω } such that W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  19. ATR 0 and ϕ X 0 Theorem: (Friedman, unpublished) Over RCA 0 the following are equivalent: ATR 0 1 ∀ X [ WO ( X ) → WO ( ϕ X 0 )] . 2 • Friedman’s proof uses computability theory and also some proof theory. Among other things it uses a result which states that if P ⊆ P ( ω ) × P ( ω ) is arithmetic, then there is no sequence { A n | n ∈ ω } such that • for every n , A n + 1 is the unique set such that P ( A n , A n + 1 ) , W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  20. ATR 0 and ϕ X 0 Theorem: (Friedman, unpublished) Over RCA 0 the following are equivalent: ATR 0 1 ∀ X [ WO ( X ) → WO ( ϕ X 0 )] . 2 • Friedman’s proof uses computability theory and also some proof theory. Among other things it uses a result which states that if P ⊆ P ( ω ) × P ( ω ) is arithmetic, then there is no sequence { A n | n ∈ ω } such that • for every n , A n + 1 is the unique set such that P ( A n , A n + 1 ) , • for every n , A ′ n + 1 ≤ T A n . W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  21. ATR 0 and ϕ X 0 W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  22. ATR 0 and ϕ X 0 Theorem: Over RCA 0 the following are equivalent: W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  23. ATR 0 and ϕ X 0 Theorem: Over RCA 0 the following are equivalent: ATR 0 1 W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  24. ATR 0 and ϕ X 0 Theorem: Over RCA 0 the following are equivalent: ATR 0 1 ∀ X [ WO ( X ) → WO ( ϕ X 0 )] . 2 W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  25. ATR 0 and ϕ X 0 Theorem: Over RCA 0 the following are equivalent: ATR 0 1 ∀ X [ WO ( X ) → WO ( ϕ X 0 )] . 2 W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  26. ATR 0 and ϕ X 0 Theorem: Over RCA 0 the following are equivalent: ATR 0 1 ∀ X [ WO ( X ) → WO ( ϕ X 0 )] . 2 • A. Marcone, A. Montalbán: The Veblen function for computability theorists , JSL 76 (2011) 575–602. W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  27. ATR 0 and ϕ X 0 Theorem: Over RCA 0 the following are equivalent: ATR 0 1 ∀ X [ WO ( X ) → WO ( ϕ X 0 )] . 2 • A. Marcone, A. Montalbán: The Veblen function for computability theorists , JSL 76 (2011) 575–602. • M. Rathjen, A. Weiermann, Reverse mathematics and well-ordering principles , Computability in Context: Computation and Logic in the Real World (S. B. Cooper and A. Sorbi, eds.) (Imperial College Press, 2011) 351–370. W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  28. Countable coded ω -models W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  29. Countable coded ω -models • An ω -model of a theory T in the language of second order arithmetic is one where the first order part is standard. W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  30. Countable coded ω -models • An ω -model of a theory T in the language of second order arithmetic is one where the first order part is standard. • Such a model is isomorphic to one of the form M = ( N , X , 0 , 1 , + , × , ∈ ) with X ⊆ P ( N ) . W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  31. Countable coded ω -models • An ω -model of a theory T in the language of second order arithmetic is one where the first order part is standard. • Such a model is isomorphic to one of the form M = ( N , X , 0 , 1 , + , × , ∈ ) with X ⊆ P ( N ) . • Definition. M is a countable coded ω -model of T if X = { ( C ) n | n ∈ N } for some C ⊆ N where ( C ) n = { k | 2 n 3 k ∈ C } . W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  32. Characterizing theories in terms of countable coded ω -models W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  33. Characterizing theories in terms of countable coded ω -models Theorem ( RCA 0 ) ACA + 0 is equivalent to the statement that every set is contained in a countable coded ω -model of ACA . W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  34. Characterizing theories in terms of countable coded ω -models Theorem ( RCA 0 ) ACA + 0 is equivalent to the statement that every set is contained in a countable coded ω -model of ACA . Theorem ( ACA 0 ) ATR 0 is equivalent to the statement that every set is contained in a countable coded ω -model of ∆ 1 1 -CA. W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  35. A Theorem Over RCA 0 the following are equivalent: W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  36. A Theorem Over RCA 0 the following are equivalent: ∀ X [ WO ( X ) → WO (Γ X )] 1 W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  37. A Theorem Over RCA 0 the following are equivalent: ∀ X [ WO ( X ) → WO (Γ X )] 1 Every set is contained in an ω -model of ATR . 2 W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  38. A Theorem Over RCA 0 the following are equivalent: ∀ X [ WO ( X ) → WO (Γ X )] 1 Every set is contained in an ω -model of ATR . 2 To appear in: Foundational Adventures , Proceedings in honor of Harvey Friedman’s 60th birthday. W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  39. Some famous theories of the 1960s and 1970s W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  40. Some famous theories of the 1960s and 1970s • Every set X ⊆ N gives rise to a binary relation ≺ X via X m iff 2 n 3 m ∈ X . n ≺ W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  41. Some famous theories of the 1960s and 1970s • Every set X ⊆ N gives rise to a binary relation ≺ X via X m iff 2 n 3 m ∈ X . n ≺ • Let BI be the schema ∀ X [ WF ( ≺ X ) → TI ( ≺ X , F ) ] where F ( x ) is an arbitrary formula of L 2 . W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  42. Some famous theories of the 1960s and 1970s • Every set X ⊆ N gives rise to a binary relation ≺ X via X m iff 2 n 3 m ∈ X . n ≺ • Let BI be the schema ∀ X [ WF ( ≺ X ) → TI ( ≺ X , F ) ] where F ( x ) is an arbitrary formula of L 2 . • Let BI be the theory ACA 0 + BI . W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  43. Some famous theories of the 1960s and 1970s • Every set X ⊆ N gives rise to a binary relation ≺ X via X m iff 2 n 3 m ∈ X . n ≺ • Let BI be the schema ∀ X [ WF ( ≺ X ) → TI ( ≺ X , F ) ] where F ( x ) is an arbitrary formula of L 2 . • Let BI be the theory ACA 0 + BI . Theorem . The following theories have the same proof-theoretic strength: W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  44. Some famous theories of the 1960s and 1970s • Every set X ⊆ N gives rise to a binary relation ≺ X via X m iff 2 n 3 m ∈ X . n ≺ • Let BI be the schema ∀ X [ WF ( ≺ X ) → TI ( ≺ X , F ) ] where F ( x ) is an arbitrary formula of L 2 . • Let BI be the theory ACA 0 + BI . Theorem . The following theories have the same proof-theoretic strength: The theory of positive arithmetic inductive definitions ID 1 . 1 W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  45. Some famous theories of the 1960s and 1970s • Every set X ⊆ N gives rise to a binary relation ≺ X via X m iff 2 n 3 m ∈ X . n ≺ • Let BI be the schema ∀ X [ WF ( ≺ X ) → TI ( ≺ X , F ) ] where F ( x ) is an arbitrary formula of L 2 . • Let BI be the theory ACA 0 + BI . Theorem . The following theories have the same proof-theoretic strength: The theory of positive arithmetic inductive definitions ID 1 . 1 Kripke-Platek set theory, KP . 2 W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  46. Some famous theories of the 1960s and 1970s • Every set X ⊆ N gives rise to a binary relation ≺ X via X m iff 2 n 3 m ∈ X . n ≺ • Let BI be the schema ∀ X [ WF ( ≺ X ) → TI ( ≺ X , F ) ] where F ( x ) is an arbitrary formula of L 2 . • Let BI be the theory ACA 0 + BI . Theorem . The following theories have the same proof-theoretic strength: The theory of positive arithmetic inductive definitions ID 1 . 1 Kripke-Platek set theory, KP . 2 BI . 3 W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  47. Some famous theories of the 1960s and 1970s • Every set X ⊆ N gives rise to a binary relation ≺ X via X m iff 2 n 3 m ∈ X . n ≺ • Let BI be the schema ∀ X [ WF ( ≺ X ) → TI ( ≺ X , F ) ] where F ( x ) is an arbitrary formula of L 2 . • Let BI be the theory ACA 0 + BI . Theorem . The following theories have the same proof-theoretic strength: The theory of positive arithmetic inductive definitions ID 1 . 1 Kripke-Platek set theory, KP . 2 BI . 3 ACA 0 + parameter-free Π 1 1 − CA . 4 W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  48. Some famous theories of the 1960s and 1970s • Every set X ⊆ N gives rise to a binary relation ≺ X via X m iff 2 n 3 m ∈ X . n ≺ • Let BI be the schema ∀ X [ WF ( ≺ X ) → TI ( ≺ X , F ) ] where F ( x ) is an arbitrary formula of L 2 . • Let BI be the theory ACA 0 + BI . Theorem . The following theories have the same proof-theoretic strength: The theory of positive arithmetic inductive definitions ID 1 . 1 Kripke-Platek set theory, KP . 2 BI . 3 ACA 0 + parameter-free Π 1 1 − CA . 4 • Their proof-theoretic ordinal is the Howard-Bachmann ordinal. W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  49. The Big Veblen Number • Veblen extended this idea first to arbitrary finite numbers of arguments , but then also to transfinite numbers of arguments , with the proviso that in, for example Φ f ( α 0 , α 1 , . . . , α η ) , only a finite number of the arguments α ν may be non-zero. W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  50. The Big Veblen Number • Veblen extended this idea first to arbitrary finite numbers of arguments , but then also to transfinite numbers of arguments , with the proviso that in, for example Φ f ( α 0 , α 1 , . . . , α η ) , only a finite number of the arguments α ν may be non-zero. • Veblen singled out the ordinal E ( 0 ) , where E ( 0 ) is the least ordinal δ > 0 which cannot be named in terms of functions Φ ℓ ( α 0 , α 1 , . . . , α η ) with η < δ , and each α γ < δ . W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  51. The Big Leap: H. Bachmann 1950 • Bachmann’s novel idea: Use uncountable ordinals to keep track of the functions defined by diagonalization. W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  52. The Big Leap: H. Bachmann 1950 • Bachmann’s novel idea: Use uncountable ordinals to keep track of the functions defined by diagonalization. • Define a set of ordinals B closed under successor such that with each limit λ ∈ B is associated an increasing sequence � λ [ ξ ] : ξ < τ λ � of ordinals λ [ ξ ] ∈ B of length τ λ ≤ B and lim ξ<τ λ λ [ ξ ] = λ . W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  53. The Big Leap: H. Bachmann 1950 • Bachmann’s novel idea: Use uncountable ordinals to keep track of the functions defined by diagonalization. • Define a set of ordinals B closed under successor such that with each limit λ ∈ B is associated an increasing sequence � λ [ ξ ] : ξ < τ λ � of ordinals λ [ ξ ] ∈ B of length τ λ ≤ B and lim ξ<τ λ λ [ ξ ] = λ . • Let Ω be the first uncountable ordinal. A hierarchy of B functions ( ϕ α ) α ∈ B is then obtained as follows: � ′ � B B B ϕ 0 ( β ) = 1 + β ϕ α + 1 = ϕ α B � B ϕ λ enumerates ( Range of ϕ λ [ ξ ] ) λ limit, τ λ < Ω ξ<τ λ B B ϕ λ enumerates { β < Ω : ϕ λ [ β ] ( 0 ) = β } λ limit, τ λ = Ω . W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  54. The Howard-Bachmann ordinal W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  55. The Howard-Bachmann ordinal Let Ω be a “big” ordinal. By recursion on α we define sets C Ω ( α ) and the ordinal ψ Ω ( α ) as follows:  closure of { 0 , Ω }   under:  C Ω ( α ) = (1) + , ( ξ �→ ω ξ )   ( ξ �− → ψ Ω ( ξ )) ξ<α  ψ Ω ( α ) ≃ min { ρ < Ω : ρ / ∈ C Ω ( α ) } . (2) W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  56. The Howard-Bachmann ordinal Let Ω be a “big” ordinal. By recursion on α we define sets C Ω ( α ) and the ordinal ψ Ω ( α ) as follows:  closure of { 0 , Ω }   under:  C Ω ( α ) = (1) + , ( ξ �→ ω ξ )   ( ξ �− → ψ Ω ( ξ )) ξ<α  ψ Ω ( α ) ≃ min { ρ < Ω : ρ / ∈ C Ω ( α ) } . (2) The Howard-Bachmann ordinal is ψ Ω ( ε Ω+ 1 ) , where ε Ω+ 1 is the next ε -number after Ω . W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  57. How to relativize the Howard-Bachmann ordinal? W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  58. How to relativize the Howard-Bachmann ordinal? • Let X be a well-ordering. W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  59. How to relativize the Howard-Bachmann ordinal? • Let X be a well-ordering. • Idea 1 : Define C X Ω ( α ) by adding ε -numbers E u BELOW Ω for every u ∈ | X | :  closure of { 0 , Ω } ∪ { E u | u ∈ | X |}   under:  C X Ω ( α ) = (3) + , ( ξ �→ ω ξ )   ( ξ �− → ψ X Ω ( ξ )) ξ<α  ψ X Ω ( α ) ≃ min { ρ < Ω : ρ / ∈ C X Ω ( α ) } . (4) W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  60. How to relativize the Howard-Bachmann ordinal? W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  61. How to relativize the Howard-Bachmann ordinal? • Idea 2 : Define C X Ω ( α ) by adding ε -numbers E u ABOVE Ω for every u ∈ | X | :  closure of { 0 , Ω } ∪ { E u | u ∈ | X |}   under:  C X Ω ( α ) = (5) + , ( ξ �→ ω ξ )   ( ξ �− → ψ X Ω ( ξ )) ξ<α  ψ X Ω ( α ) ≃ min { ρ < Ω : ρ / ∈ C X Ω ( α ) } . (6) W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  62. How to relativize the Howard-Bachmann ordinal? • Idea 2 : Define C X Ω ( α ) by adding ε -numbers E u ABOVE Ω for every u ∈ | X | :  closure of { 0 , Ω } ∪ { E u | u ∈ | X |}   under:  C X Ω ( α ) = (5) + , ( ξ �→ ω ξ )   ( ξ �− → ψ X Ω ( ξ )) ξ<α  ψ X Ω ( α ) ≃ min { ρ < Ω : ρ / ∈ C X Ω ( α ) } . (6) • Let ψ X Ω be ψ X Ω ( ∗ ) , where ∗ = sup { E u | u ∈ | X |} . W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  63. Another Theorem Over RCA 0 the following are equivalent: W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  64. Another Theorem Over RCA 0 the following are equivalent: ∀ X [ WO ( X ) → WO ( ψ X Ω )] . 1 W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  65. Another Theorem Over RCA 0 the following are equivalent: ∀ X [ WO ( X ) → WO ( ψ X Ω )] . 1 Every set is contained in a countable coded ω -model of BI . 2 W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  66. Another Theorem Over RCA 0 the following are equivalent: ∀ X [ WO ( X ) → WO ( ψ X Ω )] . 1 Every set is contained in a countable coded ω -model of BI . 2 Joint work with Pedro Francisco Valencia Vizcaino. W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  67. History of proving completeness via search trees W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  68. History of proving completeness via search trees An extremely elegant and efficient proof procedure for first order logic consists in producing the search or decomposition tree (in German “Stammbaum") of a given formula. It proceeds by decomposing the formula according to its logical structure and amounts to applying logical rules backwards. This decomposition method has been employed by Schütte (1956) to prove the completeness theorem. It is closely related to the method of “semantic tableaux" of Beth (1959) and methods of Hintikka (1955). Ultimately, the whole idea derives from Gentzen (1935). The decomposition tree method can also be extended to prove the ω -completeness theorem due to Henkin (1954) and Orey (1956). Schütte (1951) used it to prove ω -completeness in the arithmetical case. W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  69. Prospectus W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  70. Prospectus A statement of the form WOP ( f ) is Π 1 2 and therefore cannot be equivalent to a theory whose axioms have a higher complexity, like for instance Π 1 1 -comprehension. W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

  71. Prospectus A statement of the form WOP ( f ) is Π 1 2 and therefore cannot be equivalent to a theory whose axioms have a higher complexity, like for instance Π 1 1 -comprehension. After ω -models come β -models. W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS W ELL -O RDERING P RINCIPLES , O MEGA & B ETA M ODELS

Recommend


More recommend