weighted parsing for grammar based language models
play

Weighted parsing for grammar-based language models FSMNLP 2019 - PowerPoint PPT Presentation

Weighted parsing for grammar-based language models FSMNLP 2019 Richard Mrbitz Heiko Vogler 2019-09-25 The weighted parsing problem language e.g., English sentences ( ) syntactic object e.g., Fruit fmies like bananas ?


  1. Language algebras 𝑒 ∈ AST (𝐻) 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 𝑒 ∈ 𝑀(𝐻) βŠ† T 𝛡 … Fruit Fruit 𝛽 … VP β†’ 𝛾( VBZ , PP ) NN β†’ πœ€ NP β†’ 𝛿( NN ) S β†’ 𝛽( NP , VP ) factors ( Fruit flies like bananas ) = { Fruit , like bananas , … } 7 / 21 βŸ¨π‘¦ 1 flies 𝑦 2 ⟩ 𝜌 𝛡 : T 𝑆 β†’ T 𝛡 interpretation of 𝛡 as operations on the set of syntactic objects β„’ = 𝛦 βˆ— (.) 𝛦 βˆ— : T 𝛡 (terms) β†’ 𝛦 βˆ— (syntactic objects)

  2. Language algebras ⟨ Fruit flies … ⟩ 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 𝑒 ∈ 𝑀(𝐻) βŠ† T 𝛡 … Fruit Fruit 𝑒 ∈ AST (𝐻) … VP β†’ 𝛾( VBZ , PP ) NN β†’ πœ€ NP β†’ 𝛿( NN ) S β†’ 𝛽( NP , VP ) factors ( Fruit flies like bananas ) = { Fruit , like bananas , … } 7 / 21 𝜌 𝛡 : T 𝑆 β†’ T 𝛡 interpretation of 𝛡 as operations on the set of syntactic objects β„’ = 𝛦 βˆ— (.) 𝛦 βˆ— : T 𝛡 (terms) β†’ 𝛦 βˆ— (syntactic objects)

  3. Language algebras ⟨ Fruit flies … ⟩ 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 𝑒 ∈ 𝑀(𝐻) βŠ† T 𝛡 … Fruit Fruit 𝑒 ∈ AST (𝐻) … VP β†’ 𝛾( VBZ , PP ) NN β†’ πœ€ NP β†’ 𝛿( NN ) S β†’ 𝛽( NP , VP ) factors ( Fruit flies like bananas ) = { Fruit , like bananas , … } 7 / 21 𝜌 𝛡 : T 𝑆 β†’ T 𝛡 interpretation of 𝛡 as operations on the set of syntactic objects β„’ = 𝛦 βˆ— (.) 𝛦 βˆ— : T 𝛡 (terms) β†’ 𝛦 βˆ— (syntactic objects)

  4. Language algebras 𝛽 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) Fruit flies … 𝑒 ∈ 𝑀(𝐻) βŠ† T 𝛡 … 𝛾 πœ€ 𝛿 𝑒 ∈ AST (𝐻) … VP β†’ 𝛾( VBZ , PP ) NN β†’ πœ€ NP β†’ 𝛿( NN ) S β†’ 𝛽( NP , VP ) factors ( Fruit flies like bananas ) = { Fruit , like bananas , … } 7 / 21 𝜌 𝛡 : T 𝑆 β†’ T 𝛡 (.) 𝛦 βˆ— : T 𝛡 β†’ 𝛦 βˆ— interpretation of 𝛡 as operations on the set of syntactic objects β„’ = 𝛦 βˆ— (.) 𝛦 βˆ— : T 𝛡 (terms) β†’ 𝛦 βˆ— (syntactic objects)

  5. Semirings Algebraic structure ( 𝕃 , βŠ• , βŠ— , πŸ™ , 𝟚 ) βŠ— is used to evaluate an AST to a weight βŠ• accumulates the weights of several ASTs Examples ( 𝔺 , ∨, ∧, false , true ) the Boolean semiring with 𝔺 = { false , true } ( β„• ∞ , +, β‹…, 0, 1) the semiring of natural numbers ( β„• ∞ , min , +, ∞, 0) the tropical semiring ( ℝ 1 0 , max , β‹…, 0, 1) the Viterbi semiring Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 8 / 21

  6. Semirings Algebraic structure ( 𝕃 , βŠ• , βŠ— , πŸ™ , 𝟚 ) βŠ— is used to evaluate an AST to a weight βŠ• accumulates the weights of several ASTs Examples ( 𝔺 , ∨, ∧, false , true ) the Boolean semiring with 𝔺 = { false , true } ( β„• ∞ , +, β‹…, 0, 1) the semiring of natural numbers ( β„• ∞ , min , +, ∞, 0) the tropical semiring ( ℝ 1 0 , max , β‹…, 0, 1) the Viterbi semiring Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 8 / 21

  7. 𝛻 βŠ— = { mul 𝕝 ( 𝕝 1 , … , 𝕝 𝑛 ) = 𝕝 βŠ— 𝕝 1 βŠ— β‹― βŠ— 𝕝 𝑛 with 𝛻 med = { del , ins , rep = , rep β‰  , nil } Multioperator monoids (M-monoids) mul 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) Minimum edit distance M-monoid ({{π‘œ} ∣ π‘œ ∈ β„• }, min ∘ βˆͺ, βˆ…, 𝛻 med ) 0 , max , 0, 𝛻 mul ) Viterbi M-monoid ( ℝ 1 Examples (𝑛) 𝕝 ∣ 𝕝 ∈ 𝕃 , 𝑛 ∈ β„• } Generalization of semirings (𝑛) M-monoid ( 𝕃 , βŠ• , πŸ™ , 𝛻 βŠ— ) where Semiring ( 𝕃 , βŠ• , βŠ— , πŸ™ , 𝟚 ) ⟢ ( 𝕃 , βŠ• , πŸ™ , 𝛻) ⟢ ( 𝕃 , βŠ• , βŠ— , πŸ™ , 𝟚 ) 9 / 21 binary βŠ— set of 𝑛 -ary operations 𝛻 (here: distributive)

  8. with 𝛻 med = { del , ins , rep = , rep β‰  , nil } Multioperator monoids (M-monoids) Generalization of semirings 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) Minimum edit distance M-monoid ({{π‘œ} ∣ π‘œ ∈ β„• }, min ∘ βˆͺ, βˆ…, 𝛻 med ) 0 , max , 0, 𝛻 mul ) Viterbi M-monoid ( ℝ 1 Examples (𝑛) mul ∣ 𝕝 ∈ 𝕃 , 𝑛 ∈ β„• } 𝕝 (𝑛) ⟢ ( 𝕃 , βŠ• , πŸ™ , 𝛻) ⟢ ( 𝕃 , βŠ• , βŠ— , πŸ™ , 𝟚 ) 9 / 21 binary βŠ— set of 𝑛 -ary operations 𝛻 (here: distributive) Semiring ( 𝕃 , βŠ• , βŠ— , πŸ™ , 𝟚 ) ⇝ M-monoid ( 𝕃 , βŠ• , πŸ™ , 𝛻 βŠ— ) where 𝛻 βŠ— = { mul 𝕝 ( 𝕝 1 , … , 𝕝 𝑛 ) = 𝕝 βŠ— 𝕝 1 βŠ— β‹― βŠ— 𝕝 𝑛

  9. Multioperator monoids (M-monoids) Generalization of semirings 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) Minimum edit distance M-monoid ({{π‘œ} ∣ π‘œ ∈ β„• }, min ∘ βˆͺ, βˆ…, 𝛻 med ) 0 , max , 0, 𝛻 mul ) Viterbi M-monoid ( ℝ 1 Examples (𝑛) mul ∣ 𝕝 ∈ 𝕃 , 𝑛 ∈ β„• } 𝕝 (𝑛) ⟢ ( 𝕃 , βŠ• , πŸ™ , 𝛻) ⟢ ( 𝕃 , βŠ• , βŠ— , πŸ™ , 𝟚 ) 9 / 21 binary βŠ— set of 𝑛 -ary operations 𝛻 (here: distributive) Semiring ( 𝕃 , βŠ• , βŠ— , πŸ™ , 𝟚 ) ⇝ M-monoid ( 𝕃 , βŠ• , πŸ™ , 𝛻 βŠ— ) where 𝛻 βŠ— = { mul 𝕝 ( 𝕝 1 , … , 𝕝 𝑛 ) = 𝕝 βŠ— 𝕝 1 βŠ— β‹― βŠ— 𝕝 𝑛 with 𝛻 med = { del , ins , rep = , rep β‰  , nil }

  10. 1.0 β‹… 𝕝 1 β‹… 𝕝 2 0.6 β‹… 𝕝 1 β‹… 𝕝 2 1 : T 𝛻 (terms) β†’ ℝ 1 0 (weight algebra) 0.2 β‹… 𝕝 1 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) (.) ℝ 0 0 , max , 0, 𝛻 mul ) ( ℝ 1 wt : 𝑆 (set of rules) β†’ 𝛻 (set of operations) wt (𝑒) ∈ T 𝛻 wt … 1.0 Weight algebras S β†’ 𝛽( NP , VP ) (.) 𝛦 βˆ— Fruit flies … 𝑒 ∈ 𝑀(𝐻) βŠ† T 𝛡 𝜌 𝛡 … 𝛾 πœ€ 𝛿 𝛽 𝑒 ∈ AST (𝐻) … VP β†’ 𝛾( VBZ , PP ) NN β†’ πœ€ NP β†’ 𝛿( NN ) 10 / 21

  11. 1.0 β‹… 𝕝 1 β‹… 𝕝 2 0.6 β‹… 𝕝 1 β‹… 𝕝 2 1 : T 𝛻 (terms) β†’ ℝ 1 0 (weight algebra) 0.2 β‹… 𝕝 1 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) (.) ℝ 0 0 , max , 0, 𝛻 mul ) ( ℝ 1 wt : 𝑆 (set of rules) β†’ 𝛻 (set of operations) wt (𝑒) ∈ T 𝛻 wt … 1.0 Weight algebras S β†’ 𝛽( NP , VP ) (.) 𝛦 βˆ— Fruit flies … 𝑒 ∈ 𝑀(𝐻) βŠ† T 𝛡 𝜌 𝛡 … 𝛾 πœ€ 𝛿 𝛽 𝑒 ∈ AST (𝐻) … VP β†’ 𝛾( VBZ , PP ) NN β†’ πœ€ NP β†’ 𝛿( NN ) 10 / 21

  12. 1 : T 𝛻 (terms) β†’ ℝ 1 0 (weight algebra) Weight algebras S β†’ 𝛽( NP , VP ) 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) (.) ℝ 0 0 , max , 0, 𝛻 mul ) ( ℝ 1 wt : 𝑆 (set of rules) β†’ 𝛻 (set of operations) wt (𝑒) ∈ T 𝛻 wt … 1.0 0.2 β‹… 𝕝 1 10 / 21 (.) 𝛦 βˆ— Fruit flies … 𝑒 ∈ 𝑀(𝐻) βŠ† T 𝛡 𝜌 𝛡 … 𝛾 πœ€ 𝛿 𝛽 𝑒 ∈ AST (𝐻) … VP β†’ 𝛾( VBZ , PP ) NN β†’ πœ€ NP β†’ 𝛿( NN ) 1.0 β‹… 𝕝 1 β‹… 𝕝 2 0.6 β‹… 𝕝 1 β‹… 𝕝 2

  13. Weight algebras (.) 𝛦 βˆ— 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) (.) ℝ 0 0 , max , 0, 𝛻 mul ) ( ℝ 1 wt : 𝑆 (set of rules) β†’ 𝛻 (set of operations) wt (𝑒) ∈ T 𝛻 wt … 1.0 0.2 β‹… 𝕝 1 S β†’ 𝛽( NP , VP ) 10 / 21 Fruit flies … 𝑒 ∈ 𝑀(𝐻) βŠ† T 𝛡 NP β†’ 𝛿( NN ) NN β†’ πœ€ VP β†’ 𝛾( VBZ , PP ) … 𝑒 ∈ AST (𝐻) 𝛽 𝛿 πœ€ 𝛾 … 𝜌 𝛡 1.0 β‹… 𝕝 1 β‹… 𝕝 2 0.6 β‹… 𝕝 1 β‹… 𝕝 2 1 : T 𝛻 (terms) β†’ ℝ 1 0 (weight algebra)

  14. Weight algebras (.) 𝛦 βˆ— 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) (.) ℝ 0 0 , max , 0, 𝛻 mul ) ( ℝ 1 wt : 𝑆 (set of rules) β†’ 𝛻 (set of operations) wt (𝑒) ∈ T 𝛻 wt … 1.0 0.2 S β†’ 𝛽( NP , VP ) 10 / 21 Fruit flies … 𝑒 ∈ 𝑀(𝐻) βŠ† T 𝛡 NP β†’ 𝛿( NN ) NN β†’ πœ€ VP β†’ 𝛾( VBZ , PP ) … 𝑒 ∈ AST (𝐻) 𝛽 𝛿 πœ€ 𝛾 … 𝜌 𝛡 1.0 β‹… 𝕝 1 β‹… 𝕝 2 0.6 β‹… 𝕝 1 β‹… 𝕝 2 1 : T 𝛻 (terms) β†’ ℝ 1 0 (weight algebra)

  15. Weight algebras S β†’ 𝛽( NP , VP ) 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) (.) ℝ 0 0 , max , 0, 𝛻 mul ) ( ℝ 1 wt : 𝑆 (set of rules) β†’ 𝛻 (set of operations) wt (𝑒) ∈ T 𝛻 wt 0.6 β‹… … 1.0 0.2 (.) 𝛦 βˆ— Fruit flies … 𝑒 ∈ 𝑀(𝐻) βŠ† T 𝛡 NP β†’ 𝛿( NN ) NN β†’ πœ€ VP β†’ 𝛾( VBZ , PP ) … 𝑒 ∈ AST (𝐻) 𝛽 𝛿 πœ€ 𝛾 … 𝜌 𝛡 10 / 21 1.0 β‹… 𝕝 1 β‹… 𝕝 2 1 : T 𝛻 (terms) β†’ ℝ 1 0 (weight algebra)

  16. Weight algebras S β†’ 𝛽( NP , VP ) 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) (.) ℝ 0 0 , max , 0, 𝛻 mul ) ( ℝ 1 wt : 𝑆 (set of rules) β†’ 𝛻 (set of operations) wt (𝑒) ∈ T 𝛻 wt 0.6 β‹… … 1.0 0.2 0.12 β‹… … (.) 𝛦 βˆ— Fruit flies … 𝑒 ∈ 𝑀(𝐻) βŠ† T 𝛡 𝜌 𝛡 … 𝛾 πœ€ 𝛿 𝛽 𝑒 ∈ AST (𝐻) … VP β†’ 𝛾( VBZ , PP ) NN β†’ πœ€ NP β†’ 𝛿( NN ) 10 / 21 1 : T 𝛻 (terms) β†’ ℝ 1 0 (weight algebra)

  17. Weight algebras S β†’ 𝛽( NP , VP ) 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) (.) ℝ 0 0 , max , 0, 𝛻 mul ) ( ℝ 1 wt : 𝑆 (set of rules) β†’ 𝛻 (set of operations) 0 (.) ℝ 1 0.12 β‹… … wt (𝑒) ∈ T 𝛻 wt … 1.0 0.2 β‹… 𝕝 1 10 / 21 (.) 𝛦 βˆ— NP β†’ 𝛿( NN ) NN β†’ πœ€ VP β†’ 𝛾( VBZ , PP ) … 𝑒 ∈ AST (𝐻) 𝛽 𝛿 πœ€ 𝛾 … 𝜌 𝛡 𝑒 ∈ 𝑀(𝐻) βŠ† T 𝛡 Fruit flies … 1.0 β‹… 𝕝 1 β‹… 𝕝 2 0.6 β‹… 𝕝 1 β‹… 𝕝 2 1 : T 𝛻 (terms) β†’ ℝ 1 0 (weight algebra)

  18. β„’ A wRTG-LM is a tuple ( (𝐻 = (𝑂, 𝛡, 𝐡 0 , 𝑆)) Weighted RTG-based language models ⏟ ⏟ ⏟ ⏟ ⏟ ⏟ ⏟ RTG , ⏟ language algebra ), ( 𝕃 , βŠ• , πŸ™ , 𝛻) ⏟ M-monoid , wt ⏟ wt : 𝑆 β†’ 𝛻 ) . Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 ⏟⏟ Defjnition (weighted RTG-based language model) S β†’ 𝛽( NP , VP ) 𝜌 𝛡 NP β†’ 𝛿( NN ) NN β†’ πœ€ VP β†’ 𝛾( VBZ , PP ) … 𝑒 ∈ AST (𝐻) 𝛽 𝛿 πœ€ 𝛾 … 𝑒 ∈ 𝑀(𝐻) βŠ† T 𝛡 (.) 𝛦 βˆ— 0.2 β‹… 𝕝 1 1.0 … wt wt (𝑒) ∈ T 𝛻 0.12 β‹… … (.) ℝ 1 0 Fruit flies … 11 / 21 1.0 β‹… 𝕝 1 β‹… 𝕝 2 0.6 β‹… 𝕝 1 β‹… 𝕝 2

  19. Weighted RTG-based language models language algebra ⏟ ⏟ ⏟ ⏟ ⏟ ⏟ ⏟ RTG , ⏟ ), S β†’ 𝛽( NP , VP ) ( 𝕃 , βŠ• , πŸ™ , 𝛻) ⏟ M-monoid , wt ⏟ wt : 𝑆 β†’ 𝛻 ) . Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 ⏟⏟ Defjnition (weighted RTG-based language model) (.) 𝛦 βˆ— 𝑒 ∈ 𝑀(𝐻) βŠ† T 𝛡 NP β†’ 𝛿( NN ) NN β†’ πœ€ VP β†’ 𝛾( VBZ , PP ) … 𝑒 ∈ AST (𝐻) 𝛽 𝛿 πœ€ 𝛾 … 𝜌 𝛡 11 / 21 0.2 β‹… 𝕝 1 1.0 … wt wt (𝑒) ∈ T 𝛻 0.12 β‹… … (.) ℝ 1 0 Fruit flies … 1.0 β‹… 𝕝 1 β‹… 𝕝 2 0.6 β‹… 𝕝 1 β‹… 𝕝 2 β„’ A wRTG-LM is a tuple ( (𝐻 = (𝑂, 𝛡, 𝐡 0 , 𝑆))

  20. Outline 1 Weighted RTG-based language models 2 The weighted parsing problem 3 The weighted parsing algorithm Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 12 / 21

  21. The weighted parsing problem 0.2 β‹… 𝕝 1 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) (.) 𝛦 βˆ— Fruit flies … 0 (.) ℝ 1 0.12 β‹… … wt (𝑒) ∈ T 𝛻 wt … 1.0 13 / 21 S β†’ 𝛽( NP , VP ) 𝑒 ∈ 𝑀(𝐻) βŠ† T 𝛡 𝜌 𝛡 … 𝛾 πœ€ 𝛿 𝛽 𝑒 ∈ AST (𝐻) … VP β†’ 𝛾( VBZ , PP ) NN β†’ πœ€ NP β†’ 𝛿( NN ) 1.0 β‹… 𝕝 1 β‹… 𝕝 2 0.6 β‹… 𝕝 1 β‹… 𝕝 2

  22. The weighted parsing problem S β†’ 𝛽( NP , VP ) 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) (.) 𝛦 βˆ— 𝜌 𝛡 (.) 𝛦 βˆ— Fruit flies … 0 (.) ℝ 1 0.12 β‹… … wt (𝑒) ∈ T 𝛻 wt … 1.0 0.2 β‹… 𝕝 1 𝛿 NP β†’ 𝛿( NN ) NN β†’ πœ€ VP β†’ 𝛾( VBZ , PP ) … 𝑒 ∈ AST (𝐻) 𝛽 πœ€ 𝛾 … 𝜌 𝛡 𝑒 ∈ 𝑀(𝐻) βŠ† T 𝛡 13 / 21 1.0 β‹… 𝕝 1 β‹… 𝕝 2 0.6 β‹… 𝕝 1 β‹… 𝕝 2 𝑒 β€² ∈ T 𝛡 𝑒 β€² ∈ AST (𝐻)

  23. The weighted parsing problem (.) 𝛦 βˆ— 0.12 β‹… … (.) ℝ 1 0 Fruit flies … (.) 𝛦 βˆ— 𝜌 𝛡 wt (𝑒 β€² ) ∈ T 𝛻 S β†’ 𝛽( NP , VP ) wt 0.0144 (.) ℝ 1 0 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 wt (𝑒) ∈ T 𝛻 wt … πœ€ NP β†’ 𝛿( NN ) NN β†’ πœ€ VP β†’ 𝛾( VBZ , PP ) … 𝑒 ∈ AST (𝐻) 𝛽 𝛿 𝛾 … 𝜌 𝛡 𝑒 ∈ 𝑀(𝐻) βŠ† T 𝛡 0.2 β‹… 𝕝 1 1.0 13 / 21 1.0 β‹… 𝕝 1 β‹… 𝕝 2 0.6 β‹… 𝕝 1 β‹… 𝕝 2 𝑒 β€² ∈ T 𝛡 𝑒 β€² ∈ AST (𝐻)

  24. The weighted parsing problem wt (𝑒 β€² ) ∈ T 𝛻 (.) ℝ 1 0 Fruit flies … (.) 𝛦 βˆ— 𝜌 𝛡 (.) 𝛦 βˆ— wt S β†’ 𝛽( NP , VP ) 0.0144 (.) ℝ 1 0 ( ℝ 1 0 , max , 0, 𝛻 mul ) Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 0.12 β‹… … wt (𝑒) ∈ T 𝛻 wt 𝛾 NP β†’ 𝛿( NN ) NN β†’ πœ€ VP β†’ 𝛾( VBZ , PP ) … 𝑒 ∈ AST (𝐻) 𝛽 𝛿 πœ€ … … 𝜌 𝛡 𝑒 ∈ 𝑀(𝐻) βŠ† T 𝛡 0.2 β‹… 𝕝 1 1.0 13 / 21 1.0 β‹… 𝕝 1 β‹… 𝕝 2 0.6 β‹… 𝕝 1 β‹… 𝕝 2 𝑒 β€² ∈ T 𝛡 𝑒 β€² ∈ AST (𝐻)

  25. The weighted parsing problem wt (𝑒 β€² ) ∈ T 𝛻 (.) ℝ 1 0 Fruit flies … (.) 𝛦 βˆ— 𝜌 𝛡 (.) 𝛦 βˆ— wt S β†’ 𝛽( NP , VP ) 0.0144 (.) ℝ 1 0 ( ℝ 1 0 , max , 0, 𝛻 mul ) Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 0.12 β‹… … wt (𝑒) ∈ T 𝛻 wt … NP β†’ 𝛿( NN ) NN β†’ πœ€ VP β†’ 𝛾( VBZ , PP ) … 𝑒 ∈ AST (𝐻) 𝛽 𝛿 πœ€ 𝛾 … 𝜌 𝛡 𝑒 ∈ 𝑀(𝐻) βŠ† T 𝛡 0.2 β‹… 𝕝 1 1.0 13 / 21 1.0 β‹… 𝕝 1 β‹… 𝕝 2 0.6 β‹… 𝕝 1 β‹… 𝕝 2 max { 𝑒 β€² ∈ T 𝛡 𝑒 β€² ∈ AST (𝐻)

  26. The weighted parsing problem wt (.) ℝ 1 0 Fruit flies … (.) 𝛦 βˆ— 𝜌 𝛡 (.) 𝛦 βˆ— wt (𝑒 β€² ) ∈ T 𝛻 0.0144 wt (𝑒) ∈ T 𝛻 (.) ℝ 1 0 ( ℝ 1 0 , max , 0, 𝛻 mul ) parse Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 S β†’ 𝛽( NP , VP ) 0.12 β‹… … wt … NP β†’ 𝛿( NN ) NN β†’ πœ€ VP β†’ 𝛾( VBZ , PP ) … 𝑒 ∈ AST (𝐻) 𝛽 𝛿 πœ€ 𝛾 … 𝜌 𝛡 𝑒 ∈ 𝑀(𝐻) βŠ† T 𝛡 0.2 β‹… 𝕝 1 1.0 13 / 21 1.0 β‹… 𝕝 1 β‹… 𝕝 2 0.6 β‹… 𝕝 1 β‹… 𝕝 2 max { 𝑒 β€² ∈ T 𝛡 𝑒 β€² ∈ AST (𝐻)

  27. The weighted parsing problem (.) ℝ 1 Fruit flies … (.) 𝛦 βˆ— 𝜌 𝛡 (.) 𝛦 βˆ— wt (𝑒 β€² ) ∈ T 𝛻 wt 0.0144 0 S β†’ 𝛽( NP , VP ) ( ℝ 1 0 , max , 0, 𝛻 mul ) parse parse (𝑏) = βˆ‘ βŠ• π‘’βˆˆ AST (𝐻,𝑏) wt (𝑒) Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 0 (.) ℝ 1 0.12 β‹… … wt (𝑒) ∈ T 𝛻 NP β†’ 𝛿( NN ) NN β†’ πœ€ VP β†’ 𝛾( VBZ , PP ) … 𝑒 ∈ AST (𝐻) 𝛽 𝛿 πœ€ 𝛾 … 𝜌 𝛡 𝑒 ∈ 𝑀(𝐻) βŠ† T 𝛡 0.2 β‹… 𝕝 1 1.0 … wt 13 / 21 1.0 β‹… 𝕝 1 β‹… 𝕝 2 0.6 β‹… 𝕝 1 β‹… 𝕝 2 max { 𝑒 β€² ∈ T 𝛡 𝑒 β€² ∈ AST (𝐻)

  28. The weighted parsing problem Algebraic dynamic programming (Giegerich, Meyer, and Stefgen 2004) 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) Shamir 1961) Reduct of a grammar and a syntactic object (cf. Bar-Hillel, Perles, and matrix chain multiplication minimum edit distance Parsing with superior grammars (Knuth 1977; Nederhof 2003) Examples π‘œ best derivation(s) best derivation(s) derivation forest probability of best derivation string probability recognition Semiring parsing (Goodman 1999) 14 / 21

  29. Outline 1 Weighted RTG-based language models 2 The weighted parsing problem 3 The weighted parsing algorithm Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 15 / 21

  30. ((𝐻, β„’ ), 𝕃 , wt ) - 𝑏 ∈ β„’ Weighted parsing algorithm Two-phase pipeline (Goodman 1999; Nederhof 2003) - wRTG-LM parse (𝑏) = βˆ‘ βŠ• π‘’βˆˆ AST (𝐻,𝑏) wt (𝑒) Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 16 / 21

  31. Weighted parsing algorithm Two-phase pipeline (Goodman 1999; Nederhof 2003) - wRTG-LM parse (𝑏) = βˆ‘ βŠ• π‘’βˆˆ AST (𝐻,𝑏) wt (𝑒) Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 16 / 21 ((𝐻, β„’ ), 𝕃 , wt ) - 𝑏 ∈ β„’

  32. Weighted parsing algorithm Two-phase pipeline (Goodman 1999; Nederhof 2003) - wRTG-LM parse (𝑏) = βˆ‘ βŠ• π‘’βˆˆ AST (𝐻,𝑏) wt (𝑒) canonical weighted deduction system Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 16 / 21 ((𝐻, β„’ ), 𝕃 , wt ) - 𝑏 ∈ β„’

  33. Weighted parsing algorithm Two-phase pipeline (Goodman 1999; Nederhof 2003) 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) wRTG-LM system deduction weighted canonical wt (𝑒) π‘’βˆˆ AST (𝐻,𝑏) parse (𝑏) = βˆ‘ βŠ• - wRTG-LM 16 / 21 ((𝐻, β„’ ), 𝕃 , wt ) ((𝐻 β€² , π’Ÿβ„± 𝒣 βˆ… ), 𝕃 , wt β€² ) - 𝑏 ∈ β„’

  34. Weighted parsing algorithm Two-phase pipeline (Goodman 1999; Nederhof 2003) 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) ? = wt β€² (𝑒) π‘’βˆˆ AST (𝐻 β€² ) βˆ‘ βŠ• wRTG-LM system deduction weighted canonical wt (𝑒) π‘’βˆˆ AST (𝐻,𝑏) parse (𝑏) = βˆ‘ βŠ• - wRTG-LM 16 / 21 ((𝐻, β„’ ), 𝕃 , wt ) ((𝐻 β€² , π’Ÿβ„± 𝒣 βˆ… ), 𝕃 , wt β€² ) - 𝑏 ∈ β„’

  35. Weighted parsing algorithm Two-phase pipeline (Goodman 1999; Nederhof 2003) 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) algorithm computation value ? = wt β€² (𝑒) π‘’βˆˆ AST (𝐻 β€² ) βˆ‘ βŠ• 16 / 21 wRTG-LM system deduction weighted canonical wt (𝑒) π‘’βˆˆ AST (𝐻,𝑏) parse (𝑏) = βˆ‘ βŠ• - wRTG-LM ((𝐻, β„’ ), 𝕃 , wt ) ((𝐻 β€² , π’Ÿβ„± 𝒣 βˆ… ), 𝕃 , wt β€² ) - 𝑏 ∈ β„’

  36. Weighted parsing algorithm π‘’βˆˆ AST (𝐻 β€² ) 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) ? = 0 ) π‘Š(𝐡 β€² algorithm computation value ? = wt β€² (𝑒) βˆ‘ βŠ• Two-phase pipeline (Goodman 1999; Nederhof 2003) wRTG-LM system deduction weighted canonical wt (𝑒) π‘’βˆˆ AST (𝐻,𝑏) parse (𝑏) = βˆ‘ βŠ• - wRTG-LM 16 / 21 ((𝐻, β„’ ), 𝕃 , wt ) ((𝐻 β€² , π’Ÿβ„± 𝒣 βˆ… ), 𝕃 , wt β€² ) - 𝑏 ∈ β„’

  37. Weighted parsing algorithm π‘’βˆˆ AST (𝐻 β€² ) 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) weighted parsing algorithm ? = 0 ) π‘Š(𝐡 β€² algorithm computation value ? = wt β€² (𝑒) βˆ‘ βŠ• Two-phase pipeline (Goodman 1999; Nederhof 2003) wRTG-LM system deduction weighted canonical wt (𝑒) π‘’βˆˆ AST (𝐻,𝑏) parse (𝑏) = βˆ‘ βŠ• - wRTG-LM 16 / 21 ((𝐻, β„’ ), 𝕃 , wt ) ((𝐻 β€² , π’Ÿβ„± 𝒣 βˆ… ), 𝕃 , wt β€² ) - 𝑏 ∈ β„’

  38. Canonical weighted deduction system Weight preserving 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) wt (𝑒) = wt β€² (πœ”(𝑒)) for every 𝑒 ∈ AST (𝐻, 𝑏) 2 Bijection πœ”: AST (𝐻, 𝑏) β†’ AST (𝐻 β€² ) 1 𝐡 β†’ 𝜏(𝐡 1 , … , 𝐡 𝑛 ) is a rule { [𝐡 , 𝑏 0 ] Parsing as deduction (Shieber, Schabes, and Pereira 1995) cwds 17 / 21 - wRTG-LM ((𝐻, β„’ ), 𝕃 , wt ) wRTG-LM ((𝐻 β€² , π’Ÿβ„± 𝒣 βˆ… ), 𝕃 , wt β€² ) - 𝑏 ∈ β„’ [𝐡 1 , 𝑏 1 ] … [𝐡 𝑛 , 𝑏 𝑛 ] 𝑏 0 , 𝑏 1 , … , 𝑏 𝑛 ∈ factors (𝑏) 𝑏 0 = 𝜏(𝑏 1 , … , 𝑏 𝑛 )

  39. Canonical weighted deduction system Weight preserving 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) wt (𝑒) = wt β€² (πœ”(𝑒)) for every 𝑒 ∈ AST (𝐻, 𝑏) 2 Bijection πœ”: AST (𝐻, 𝑏) β†’ AST (𝐻 β€² ) 1 𝐡 β†’ 𝜏(𝐡 1 , … , 𝐡 𝑛 ) is a rule { [𝐡 , 𝑏 0 ] Parsing as deduction (Shieber, Schabes, and Pereira 1995) cwds 17 / 21 - wRTG-LM ((𝐻, β„’ ), 𝕃 , wt ) wRTG-LM ((𝐻 β€² , π’Ÿβ„± 𝒣 βˆ… ), 𝕃 , wt β€² ) - 𝑏 ∈ β„’ [𝐡 1 , 𝑏 1 ] … [𝐡 𝑛 , 𝑏 𝑛 ] 𝑏 0 , 𝑏 1 , … , 𝑏 𝑛 ∈ factors (𝑏) 𝑏 0 = 𝜏(𝑏 1 , … , 𝑏 𝑛 )

  40. Canonical weighted deduction system Weight preserving 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) wt (𝑒) = wt β€² (πœ”(𝑒)) for every 𝑒 ∈ AST (𝐻, 𝑏) 2 Bijection πœ”: AST (𝐻, 𝑏) β†’ AST (𝐻 β€² ) 1 𝐡 β†’ 𝜏(𝐡 1 , … , 𝐡 𝑛 ) is a rule { [𝐡 , 𝑏 0 ] Parsing as deduction (Shieber, Schabes, and Pereira 1995) cwds 17 / 21 - wRTG-LM ((𝐻, β„’ ), 𝕃 , wt ) wRTG-LM ((𝐻 β€² , π’Ÿβ„± 𝒣 βˆ… ), 𝕃 , wt β€² ) - 𝑏 ∈ β„’ [𝐡 1 , 𝑏 1 ] … [𝐡 𝑛 , 𝑏 𝑛 ] 𝑏 0 , 𝑏 1 , … , 𝑏 𝑛 ∈ factors (𝑏) 𝑏 0 = 𝜏(𝑏 1 , … , 𝑏 𝑛 )

  41. Canonical weighted deduction system Weight preserving 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) wt (𝑒) = wt β€² (πœ”(𝑒)) for every 𝑒 ∈ AST (𝐻, 𝑏) 2 Bijection πœ”: AST (𝐻, 𝑏) β†’ AST (𝐻 β€² ) 1 17 / 21 { [𝐡 , 𝑏 0 ] Parsing as deduction (Shieber, Schabes, and Pereira 1995) cwds - wRTG-LM ((𝐻, β„’ ), 𝕃 , wt ) wRTG-LM ((𝐻 β€² , π’Ÿβ„± 𝒣 βˆ… ), 𝕃 , wt β€² ) - 𝑏 ∈ β„’ 𝐡 β†’ 𝜏(𝐡 1 , … , 𝐡 𝑛 ) is a rule [𝐡 1 , 𝑏 1 ] … [𝐡 𝑛 , 𝑏 𝑛 ] 𝑏 0 , 𝑏 1 , … , 𝑏 𝑛 ∈ factors (𝑏) 𝑏 0 = 𝜏(𝑏 1 , … , 𝑏 𝑛 )

  42. Canonical weighted deduction system Weight preserving 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) wt (𝑒) = wt β€² (πœ”(𝑒)) for every 𝑒 ∈ AST (𝐻, 𝑏) 2 Bijection πœ”: AST (𝐻, 𝑏) β†’ AST (𝐻 β€² ) 1 𝐡 β†’ 𝜏(𝐡 1 , … , 𝐡 𝑛 ) is a rule { [𝐡 , 𝑏 0 ] Parsing as deduction (Shieber, Schabes, and Pereira 1995) cwds 17 / 21 - wRTG-LM ((𝐻, β„’ ), 𝕃 , wt ) wRTG-LM ((𝐻 β€² , π’Ÿβ„± 𝒣 βˆ… ), 𝕃 , wt β€² ) - 𝑏 ∈ β„’ [𝐡 1 , 𝑏 1 ] … [𝐡 𝑛 , 𝑏 𝑛 ] 𝑏 0 , 𝑏 1 , … , 𝑏 𝑛 ∈ factors (𝑏) 𝑏 0 = 𝜏(𝑏 1 , … , 𝑏 𝑛 )

  43. Canonical weighted deduction system Weight preserving 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) wt (𝑒) = wt β€² (πœ”(𝑒)) for every 𝑒 ∈ AST (𝐻, 𝑏) 2 Bijection πœ”: AST (𝐻, 𝑏) β†’ AST (𝐻 β€² ) 1 𝐡 β†’ 𝜏(𝐡 1 , … , 𝐡 𝑛 ) is a rule { [𝐡 , 𝑏 0 ] Parsing as deduction (Shieber, Schabes, and Pereira 1995) cwds 17 / 21 - wRTG-LM ((𝐻, β„’ ), 𝕃 , wt ) wRTG-LM ((𝐻 β€² , π’Ÿβ„± 𝒣 βˆ… ), 𝕃 , wt β€² ) - 𝑏 ∈ β„’ [𝐡 1 , 𝑏 1 ] … [𝐡 𝑛 , 𝑏 𝑛 ] 𝑏 0 , 𝑏 1 , … , 𝑏 𝑛 ∈ factors (𝑏) 𝑏 0 = 𝜏(𝑏 1 , … , 𝑏 𝑛 )

  44. Weighted parsing algorithm π‘’βˆˆ AST (𝐻 β€² ) 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) weighted parsing algorithm ? = 0 ) π‘Š(𝐡 β€² algorithm computation value ? = wt β€² (𝑒) βˆ‘ βŠ• Two-phase pipeline (Goodman 1999; Nederhof 2003) wRTG-LM system deduction weighted canonical wt (𝑒) π‘’βˆˆ AST (𝐻,𝑏) parse (𝑏) = βˆ‘ βŠ• - wRTG-LM 18 / 21 ((𝐻, β„’ ), 𝕃 , wt ) ((𝐻 β€² , π’Ÿβ„± 𝒣 βˆ… ), 𝕃 , wt β€² ) - 𝑏 ∈ β„’

  45. Value computation algorithm 5: 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 12: until changed = false π‘Š(𝐡) ← π‘Š new 11: changed ← true 10: 9: 8: 7: 6: changed ← false π‘Š(𝐡) ← πŸ™ 0 , 𝑆 β€² ) Output: π‘Š(𝐡 β€² 0 ) 2: 19 / 21 3: repeat 4: Input: a wRTG-LM ((𝐻 β€² , π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , βŠ• , πŸ™ , 𝛻), wt β€² ) with 𝐻 β€² = (𝑂 β€² , 𝛡 β€² , 𝐡 β€² Variables: π‘Š: 𝑂 β€² β†’ 𝕃 , π‘Š new ∈ 𝕃 , changed ∈ 𝔺 1: for each 𝐡 ∈ 𝑂 β€² do for each 𝐡 ∈ 𝑂 β€² do π‘Š new ← πŸ™ for each 𝑠 = (𝐡 β†’ βŸ¨π‘¦ 1 … 𝑦 𝑛 ⟩(𝐡 1 , … , 𝐡 𝑛 )) in 𝑆 β€² do π‘Š new ← π‘Š new βŠ• wt β€² (𝑠)(π‘Š(𝐡 1 ), … , π‘Š(𝐡 𝑛 )) if π‘Š(𝐡) β‰  π‘Š new then

  46. ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ … πœ€ πŸ™ πŸ™ ( B A S 𝜏 𝛾 𝛿 S 𝛽 B A β†’ 𝛾 βˆ’ βˆ’ βˆ’ πŸ™ Value computation algorithm (example) πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² πœ• 3 () πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 βˆ’ πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () βˆ’ βˆ’ βˆ’ β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 2 S βˆ’ β†’ πœ€( B ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 1 S βˆ’ A πœ• 3 βˆ’ πœ• 5 B β†’ 𝜏( A , S ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 4 B β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 20 / 21 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt )

  47. ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ … πœ€ πŸ™ πŸ™ ( B A S 𝜏 𝛾 𝛿 S 𝛽 B A β†’ 𝛾 βˆ’ βˆ’ βˆ’ πŸ™ Value computation algorithm (example) πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² πœ• 3 () πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 βˆ’ πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () βˆ’ βˆ’ βˆ’ β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 2 S βˆ’ β†’ πœ€( B ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 1 S βˆ’ A πœ• 3 βˆ’ πœ• 5 B β†’ 𝜏( A , S ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 4 B β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 20 / 21 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt )

  48. ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ … πœ€ πŸ™ πŸ™ ( B A S 𝜏 𝛾 𝛿 S 𝛽 B A β†’ 𝛾 βˆ’ βˆ’ βˆ’ πŸ™ Value computation algorithm (example) πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² πœ• 3 () πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 βˆ’ πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () βˆ’ βˆ’ βˆ’ β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 2 S βˆ’ β†’ πœ€( B ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 1 S βˆ’ A πœ• 3 βˆ’ πœ• 5 B β†’ 𝜏( A , S ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 4 B β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 20 / 21 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt )

  49. ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ … πœ€ πŸ™ πŸ™ ( B A S 𝜏 𝛾 𝛿 S 𝛽 B A β†’ 𝛾 βˆ’ βˆ’ βˆ’ πŸ™ Value computation algorithm (example) πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² πœ• 3 () πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 βˆ’ πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () βˆ’ βˆ’ βˆ’ β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 2 S βˆ’ β†’ πœ€( B ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 1 S βˆ’ A πœ• 3 βˆ’ πœ• 5 B β†’ 𝜏( A , S ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 4 B β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 20 / 21 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt )

  50. ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ … πœ€ πŸ™ πŸ™ ( B A S 𝜏 𝛾 𝛿 S 𝛽 B A β†’ 𝛾 βˆ’ βˆ’ βˆ’ πŸ™ Value computation algorithm (example) πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² πœ• 3 () πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 βˆ’ πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () βˆ’ βˆ’ βˆ’ β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 2 S βˆ’ β†’ πœ€( B ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 1 S βˆ’ A πœ• 3 βˆ’ πœ• 5 B β†’ 𝜏( A , S ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 4 B β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 20 / 21 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt )

  51. ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ … πœ€ πŸ™ πŸ™ ( B A S 𝜏 𝛾 𝛿 S 𝛽 B A β†’ 𝛾 βˆ’ βˆ’ βˆ’ πŸ™ Value computation algorithm (example) πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² πœ• 3 () πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 βˆ’ πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () βˆ’ βˆ’ βˆ’ β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 2 S βˆ’ β†’ πœ€( B ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 1 S βˆ’ A πœ• 3 βˆ’ πœ• 5 B β†’ 𝜏( A , S ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 4 B β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 20 / 21 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt )

  52. ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ … 𝜏 πŸ™ πŸ™ πŸ™ ( B A S S πœ€ 𝛿 𝛾 𝛽 B A β†’ 𝛾 βˆ’ βˆ’ ) Value computation algorithm (example) πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² πœ• 3 () πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 βˆ’ πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () βˆ’ βˆ’ βˆ’ S βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 2 β†’ 𝛿( A ) A βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 1 S β†’ πœ€( B ) πœ• 3 βˆ’ βˆ’ πœ• 5 B β†’ 𝜏( A , S ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 4 B β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 20 / 21 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt )

  53. ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) = ( ) ↦ ( ) = ( ) ↦ … πœ€ πŸ™ πŸ™ ( B A S 𝜏 𝛾 𝛿 S πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) 𝛽 B A β†’ 𝛾 βˆ’ βˆ’ βˆ’ πŸ™ Value computation algorithm (example) πœ• 3 () 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 βˆ’ ) βˆ’ βˆ’ βˆ’ S βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 2 β†’ 𝛿( A ) A βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 1 S β†’ πœ€( B ) πœ• 3 20 / 21 βˆ’ πœ• 5 B β†’ 𝜏( A , S ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 4 B β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ) ↦ (

  54. ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ↦ ( ) = ( ) ↦ … Value computation algorithm (example) 𝛿 πŸ™ ( B A S 𝜏 πœ€ 𝛾 S πŸ™ 𝛽 B A β†’ 𝛾 βˆ’ βˆ’ βˆ’ πŸ™ 𝕝 1 πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² πœ• 3 () πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) ) 𝕝 3 𝕝 2 βˆ’ πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () βˆ’ βˆ’ βˆ’ S βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 2 β†’ 𝛿( A ) πœ• 3 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 1 S β†’ πœ€( B ) A 20 / 21 βˆ’ πœ• 5 B β†’ 𝜏( A , S ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 4 B β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ) ↦ ( ) = (

  55. ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ↦ ( ) = ( ) ↦ … Value computation algorithm (example) 𝛿 πŸ™ ( B A S 𝜏 πœ€ 𝛾 S πŸ™ 𝛽 B A β†’ 𝛾 βˆ’ βˆ’ βˆ’ πŸ™ 𝕝 1 πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² πœ• 3 () πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) ) 𝕝 3 𝕝 2 βˆ’ πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () βˆ’ βˆ’ βˆ’ S βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 2 β†’ 𝛿( A ) πœ• 3 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 1 S β†’ πœ€( B ) A 20 / 21 βˆ’ πœ• 5 B β†’ 𝜏( A , S ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 4 B β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ) ↦ ( ) = (

  56. ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ↦ ( ) = ( ) ↦ … Value computation algorithm (example) 𝛿 πŸ™ ( B A S 𝜏 πœ€ 𝛾 S πŸ™ 𝛽 B A β†’ 𝛾 βˆ’ βˆ’ βˆ’ πŸ™ 𝕝 1 πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² πœ• 3 () πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) ) 𝕝 3 𝕝 2 βˆ’ πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () βˆ’ βˆ’ βˆ’ S βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 2 β†’ 𝛿( A ) πœ• 3 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 1 S β†’ πœ€( B ) A 20 / 21 βˆ’ πœ• 5 B β†’ 𝜏( A , S ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 4 B β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ) ↦ ( ) = (

  57. ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ↦ ( ) = ( ) ↦ … Value computation algorithm (example) 𝛿 πŸ™ ( B A S 𝜏 πœ€ 𝛾 S πŸ™ 𝛽 B A β†’ 𝛾 βˆ’ βˆ’ βˆ’ πŸ™ 𝕝 1 πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² πœ• 3 () πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) ) 𝕝 3 𝕝 2 βˆ’ πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () βˆ’ βˆ’ βˆ’ S βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 2 β†’ 𝛿( A ) πœ• 3 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 1 S β†’ πœ€( B ) A 20 / 21 βˆ’ πœ• 5 B β†’ 𝜏( A , S ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 4 B β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ) ↦ ( ) = (

  58. ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ↦ ( ) = ( ) ↦ … Value computation algorithm (example) 𝛿 πŸ™ ( B A S 𝜏 πœ€ 𝛾 S πŸ™ 𝛽 B A β†’ 𝛾 βˆ’ βˆ’ βˆ’ πŸ™ 𝕝 1 πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² πœ• 3 () πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) ) 𝕝 3 𝕝 2 βˆ’ πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () βˆ’ βˆ’ βˆ’ S βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 2 β†’ 𝛿( A ) πœ• 3 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 1 S β†’ πœ€( B ) A 20 / 21 βˆ’ πœ• 5 B β†’ 𝜏( A , S ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 4 B β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ) ↦ ( ) = (

  59. ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) = ( ) ↦ … Value computation algorithm (example) S πŸ™ ( B A S 𝜏 πœ€ 𝛿 𝛽 𝛾 πŸ™ B A β†’ 𝛾 βˆ’ βˆ’ βˆ’ βˆ’ πŸ™ πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) ) 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 1 ) βŠ• πœ• 5 () πœ• 3 () 2 , 𝕝 β€² πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 βˆ’ βˆ’ βˆ’ 20 / 21 S βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 2 β†’ 𝛿( A ) A βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 1 S πœ• 5 β†’ πœ€( B ) B β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 4 πœ• 3 βˆ’ βˆ’ βˆ’ βˆ’ β†’ 𝜏( A , S ) βˆ’ βˆ’ βˆ’ B βˆ’ βˆ’ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ) ↦ ( ) = ( ) ↦ (

  60. ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) Value computation algorithm (example) S πŸ™ ( B A S 𝜏 πœ€ 𝛿 𝛽 𝛾 πŸ™ B A β†’ 𝛾 βˆ’ βˆ’ βˆ’ βˆ’ πŸ™ πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) 1 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) ↦ … ) 3 𝕝 β€² 2 𝕝 β€² 𝕝 β€² πœ• 3 () 1 ) βŠ• πœ• 5 () 2 , 𝕝 β€² πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 βˆ’ βˆ’ βˆ’ 20 / 21 β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 2 S βˆ’ πœ• 5 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 1 S βˆ’ β†’ πœ€( B ) A πœ• 4 B β†’ 𝜏( A , S ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ B β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 3 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ) ↦ ( ) = ( ) ↦ ( ) = (

  61. ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) Value computation algorithm (example) S πŸ™ ( B A S 𝜏 πœ€ 𝛿 𝛽 𝛾 πŸ™ B A β†’ 𝛾 βˆ’ βˆ’ βˆ’ βˆ’ πŸ™ πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) 1 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) ↦ … ) 3 𝕝 β€² 2 𝕝 β€² 𝕝 β€² πœ• 3 () 1 ) βŠ• πœ• 5 () 2 , 𝕝 β€² πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 βˆ’ βˆ’ βˆ’ 20 / 21 β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 2 S βˆ’ πœ• 5 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 1 S βˆ’ β†’ πœ€( B ) A πœ• 4 B β†’ 𝜏( A , S ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ B β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 3 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ) ↦ ( ) = ( ) ↦ ( ) = (

  62. ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) Value computation algorithm (example) S πŸ™ ( B A S 𝜏 πœ€ 𝛿 𝛽 𝛾 πŸ™ B A β†’ 𝛾 βˆ’ βˆ’ βˆ’ βˆ’ πŸ™ πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) 1 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) ↦ … ) 3 𝕝 β€² 2 𝕝 β€² 𝕝 β€² πœ• 3 () 1 ) βŠ• πœ• 5 () 2 , 𝕝 β€² πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 βˆ’ βˆ’ βˆ’ 20 / 21 β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 2 S βˆ’ πœ• 5 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 1 S βˆ’ β†’ πœ€( B ) A πœ• 4 B β†’ 𝜏( A , S ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ B β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 3 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ) ↦ ( ) = ( ) ↦ ( ) = (

  63. ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) Value computation algorithm (example) S πŸ™ ( B A S 𝜏 πœ€ 𝛿 𝛽 𝛾 πŸ™ B A β†’ 𝛾 βˆ’ βˆ’ βˆ’ βˆ’ πŸ™ πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) 1 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) ↦ … ) 3 𝕝 β€² 2 𝕝 β€² 𝕝 β€² πœ• 3 () 1 ) βŠ• πœ• 5 () 2 , 𝕝 β€² πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 βˆ’ βˆ’ βˆ’ 20 / 21 β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 2 S βˆ’ πœ• 5 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 1 S βˆ’ β†’ πœ€( B ) A πœ• 4 B β†’ 𝜏( A , S ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ B β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 3 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ) ↦ ( ) = ( ) ↦ ( ) = (

  64. ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) Value computation algorithm (example) S πŸ™ ( B A S 𝜏 πœ€ 𝛿 𝛽 𝛾 πŸ™ B A β†’ 𝛾 βˆ’ βˆ’ βˆ’ βˆ’ πŸ™ πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) 1 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) ↦ … ) 3 𝕝 β€² 2 𝕝 β€² 𝕝 β€² πœ• 3 () 1 ) βŠ• πœ• 5 () 2 , 𝕝 β€² πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 βˆ’ βˆ’ βˆ’ 20 / 21 β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 2 S βˆ’ πœ• 5 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 1 S βˆ’ β†’ πœ€( B ) A πœ• 4 B β†’ 𝜏( A , S ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ B β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 3 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ) ↦ ( ) = ( ) ↦ ( ) = (

  65. ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) Value computation algorithm (example) 𝛾 ( B A S 𝜏 πœ€ 𝛿 S B 𝛽 πŸ™ A β†’ 𝛾 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πŸ™ πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) πŸ™ 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² πœ• 5 πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () πœ• 3 () βˆ’ βˆ’ B β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 2 S βˆ’ β†’ πœ€( B ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 1 S βˆ’ 20 / 21 A πœ• 3 β†’ 𝜏( A , S ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 4 B β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ …

  66. Value computation algorithm (example) 𝛽 B A S 𝜏 πœ€ 𝛿 S 𝛾 B πŸ™ A β†’ 𝛾 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ ( πŸ™ B 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² πŸ™ πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () πœ• 3 () πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) πœ• 5 βˆ’ β†’ 𝜏( A , S ) β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 2 S βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 1 S βˆ’ 20 / 21 β†’ πœ€( B ) β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ A B πœ• 4 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 3 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ …

  67. Value computation algorithm (example) 𝛽 B A S 𝜏 πœ€ 𝛿 S 𝛾 B πŸ™ A β†’ 𝛾 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ ( πŸ™ B 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² πŸ™ πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () πœ• 3 () πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) πœ• 5 βˆ’ β†’ 𝜏( A , S ) β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 2 S βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.8β‹… 𝕝 1 S βˆ’ 20 / 21 β†’ πœ€( B ) β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ A B πœ• 4 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 3 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ …

  68. Value computation algorithm (example) 𝛽 B A S 𝜏 πœ€ 𝛿 S 𝛾 B πŸ™ A β†’ 𝛾 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ ( πŸ™ B 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² πŸ™ πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () πœ• 3 () πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) πœ• 5 βˆ’ β†’ 𝜏( A , S ) β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.1β‹… 𝕝 1 S βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.8β‹… 𝕝 1 S βˆ’ 20 / 21 β†’ πœ€( B ) β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ A B πœ• 4 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ πœ• 3 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ …

  69. Value computation algorithm (example) 𝛽 B A S 𝜏 πœ€ 𝛿 S 𝛾 B πŸ™ A β†’ 𝛾 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ ( πŸ™ B 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² πŸ™ πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () πœ• 3 () πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) πœ• 5 βˆ’ β†’ 𝜏( A , S ) β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.1β‹… 𝕝 1 S βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.8β‹… 𝕝 1 S βˆ’ 20 / 21 β†’ πœ€( B ) β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ A B πœ• 4 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.5 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ …

  70. Value computation algorithm (example) 𝛽 B A S 𝜏 πœ€ 𝛿 S 𝛾 B πŸ™ A β†’ 𝛾 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ ( πŸ™ B 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² πŸ™ πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () πœ• 3 () πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) 0.1 βˆ’ β†’ 𝜏( A , S ) β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.1β‹… 𝕝 1 S βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.8β‹… 𝕝 1 S βˆ’ 20 / 21 β†’ πœ€( B ) β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ A B 0.7β‹… 𝕝 1 β‹… 𝕝 2 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.5 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ …

  71. Value computation algorithm (example) 𝛽 B A S 𝜏 πœ€ 𝛿 S 𝛾 B 0 A β†’ 𝛾 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ ( 0 B 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² 0 πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () πœ• 3 () πœ• 1 ( πŸ™ ) βŠ• πœ• 2 ( πŸ™ ) 0.1 βˆ’ β†’ 𝜏( A , S ) β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.1β‹… 𝕝 1 S βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.8β‹… 𝕝 1 S βˆ’ 20 / 21 β†’ πœ€( B ) β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ A B 0.7β‹… 𝕝 1 β‹… 𝕝 2 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.5 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ …

  72. Value computation algorithm (example) 𝛽 B A S 𝜏 πœ€ 𝛿 S 𝛾 B 0 A β†’ 𝛾 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ ( 0 B 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² 0 πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () πœ• 3 () 0.8 β‹… 0 max 0.1 β‹… 0 0.1 βˆ’ β†’ 𝜏( A , S ) β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.1β‹… 𝕝 1 S βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.8β‹… 𝕝 1 S βˆ’ 20 / 21 β†’ πœ€( B ) β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ A B 0.7β‹… 𝕝 1 β‹… 𝕝 2 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.5 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ …

  73. Value computation algorithm (example) 𝛽 B A S 𝜏 πœ€ 𝛿 S 𝛾 B 0 A β†’ 𝛾 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ ( 0 B 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² 0 πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () πœ• 3 () 0 0.1 βˆ’ β†’ 𝜏( A , S ) β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.1β‹… 𝕝 1 S βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.8β‹… 𝕝 1 S βˆ’ 20 / 21 β†’ πœ€( B ) β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ A B 0.7β‹… 𝕝 1 β‹… 𝕝 2 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.5 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ …

  74. Value computation algorithm (example) 𝛽 B A S 𝜏 πœ€ 𝛿 S 𝛾 B 0 A β†’ 𝛾 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ ( 0 B 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² 0 πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 πœ• 4 ( 𝕝 2 , 𝕝 1 ) βŠ• πœ• 5 () 0.5 0 0.1 βˆ’ β†’ 𝜏( A , S ) β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.1β‹… 𝕝 1 S βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.8β‹… 𝕝 1 S βˆ’ 20 / 21 β†’ πœ€( B ) β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ A B 0.7β‹… 𝕝 1 β‹… 𝕝 2 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.5 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ …

  75. Value computation algorithm (example) 𝛽 B A S 𝜏 πœ€ 𝛿 S 𝛾 B 0 A β†’ 𝛾 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ ( 0 B 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² 0 πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 0.7 β‹… 0.5 β‹… 0 max 0.1 0.5 0 0.1 βˆ’ β†’ 𝜏( A , S ) β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.1β‹… 𝕝 1 S βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.8β‹… 𝕝 1 S βˆ’ 20 / 21 β†’ πœ€( B ) β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ A B 0.7β‹… 𝕝 1 β‹… 𝕝 2 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.5 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ …

  76. Value computation algorithm (example) 𝛽 B A S 𝜏 πœ€ 𝛿 S 𝛾 B 0 A β†’ 𝛾 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ ( 0 B 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² 0 πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 0.1 0.5 0 0.1 βˆ’ β†’ 𝜏( A , S ) β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.1β‹… 𝕝 1 S βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.8β‹… 𝕝 1 S βˆ’ 20 / 21 β†’ πœ€( B ) β†’ 𝛽 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ A B 0.7β‹… 𝕝 1 β‹… 𝕝 2 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.5 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ …

  77. Value computation algorithm (example) B S 𝜏 πœ€ 𝛿 S 𝛾 𝛽 A B β†’ 𝛾 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ A ( β†’ 𝜏( A , S ) 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² 0 πœ• 4 ( 𝕝 β€² πœ• 3 () πœ• 1 ( 𝕝 2 ) βŠ• πœ• 2 ( 𝕝 3 ) 0.1 0.5 0 0 0 0.1 B βˆ’ β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.1β‹… 𝕝 1 S βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.8β‹… 𝕝 1 S βˆ’ βˆ’ β†’ πœ€( B ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.7β‹… 𝕝 1 β‹… 𝕝 2 A β†’ 𝛽 B βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.5 20 / 21 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) ↦ ( ) = ( ) ↦ …

  78. Value computation algorithm (example) B S 𝜏 πœ€ 𝛿 S 𝛾 𝛽 A B β†’ 𝛾 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ A ( β†’ 𝜏( A , S ) 1 ) βŠ• πœ• 5 () 2019-09-25 Richard MΓΆrbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 β€² 2 𝕝 β€² 1 𝕝 β€² 2 , 𝕝 β€² 0 πœ• 4 ( 𝕝 β€² πœ• 3 () 0.8 β‹… 0.5 max 0.1 β‹… 0.1 0.1 0.5 0 0 0 0.1 B βˆ’ β†’ 𝛿( A ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.1β‹… 𝕝 1 S βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.8β‹… 𝕝 1 S βˆ’ βˆ’ β†’ πœ€( B ) βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.7β‹… 𝕝 1 β‹… 𝕝 2 A β†’ 𝛽 B βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 0.5 20 / 21 ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( 𝕃 , πŸ™ , βŠ• , 𝛻), wt ) ⇝ ((𝐻, π’Ÿβ„± 𝒣 βˆ… ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) ↦ ( ) = ( ) ↦ …

Recommend


More recommend