Language algebras 𝑒 ∈ AST (𝐻) 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 𝑢 ∈ 𝑀(𝐻) ⊆ T 𝛵 … Fruit Fruit 𝛽 … VP → 𝛾( VBZ , PP ) NN → 𝜀 NP → 𝛿( NN ) S → 𝛽( NP , VP ) factors ( Fruit flies like bananas ) = { Fruit , like bananas , … } 7 / 21 ⟨𝑦 1 flies 𝑦 2 ⟩ 𝜌 𝛵 : T 𝑆 → T 𝛵 interpretation of 𝛵 as operations on the set of syntactic objects ℒ = 𝛦 ∗ (.) 𝛦 ∗ : T 𝛵 (terms) → 𝛦 ∗ (syntactic objects)
Language algebras ⟨ Fruit flies … ⟩ 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 𝑢 ∈ 𝑀(𝐻) ⊆ T 𝛵 … Fruit Fruit 𝑒 ∈ AST (𝐻) … VP → 𝛾( VBZ , PP ) NN → 𝜀 NP → 𝛿( NN ) S → 𝛽( NP , VP ) factors ( Fruit flies like bananas ) = { Fruit , like bananas , … } 7 / 21 𝜌 𝛵 : T 𝑆 → T 𝛵 interpretation of 𝛵 as operations on the set of syntactic objects ℒ = 𝛦 ∗ (.) 𝛦 ∗ : T 𝛵 (terms) → 𝛦 ∗ (syntactic objects)
Language algebras ⟨ Fruit flies … ⟩ 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 𝑢 ∈ 𝑀(𝐻) ⊆ T 𝛵 … Fruit Fruit 𝑒 ∈ AST (𝐻) … VP → 𝛾( VBZ , PP ) NN → 𝜀 NP → 𝛿( NN ) S → 𝛽( NP , VP ) factors ( Fruit flies like bananas ) = { Fruit , like bananas , … } 7 / 21 𝜌 𝛵 : T 𝑆 → T 𝛵 interpretation of 𝛵 as operations on the set of syntactic objects ℒ = 𝛦 ∗ (.) 𝛦 ∗ : T 𝛵 (terms) → 𝛦 ∗ (syntactic objects)
Language algebras 𝛽 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) Fruit flies … 𝑢 ∈ 𝑀(𝐻) ⊆ T 𝛵 … 𝛾 𝜀 𝛿 𝑒 ∈ AST (𝐻) … VP → 𝛾( VBZ , PP ) NN → 𝜀 NP → 𝛿( NN ) S → 𝛽( NP , VP ) factors ( Fruit flies like bananas ) = { Fruit , like bananas , … } 7 / 21 𝜌 𝛵 : T 𝑆 → T 𝛵 (.) 𝛦 ∗ : T 𝛵 → 𝛦 ∗ interpretation of 𝛵 as operations on the set of syntactic objects ℒ = 𝛦 ∗ (.) 𝛦 ∗ : T 𝛵 (terms) → 𝛦 ∗ (syntactic objects)
Semirings Algebraic structure ( 𝕃 , ⊕ , ⊗ , 𝟙 , 𝟚 ) ⊗ is used to evaluate an AST to a weight ⊕ accumulates the weights of several ASTs Examples ( , ∨, ∧, false , true ) the Boolean semiring with = { false , true } ( ℕ ∞ , +, ⋅, 0, 1) the semiring of natural numbers ( ℕ ∞ , min , +, ∞, 0) the tropical semiring ( ℝ 1 0 , max , ⋅, 0, 1) the Viterbi semiring Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 8 / 21
Semirings Algebraic structure ( 𝕃 , ⊕ , ⊗ , 𝟙 , 𝟚 ) ⊗ is used to evaluate an AST to a weight ⊕ accumulates the weights of several ASTs Examples ( , ∨, ∧, false , true ) the Boolean semiring with = { false , true } ( ℕ ∞ , +, ⋅, 0, 1) the semiring of natural numbers ( ℕ ∞ , min , +, ∞, 0) the tropical semiring ( ℝ 1 0 , max , ⋅, 0, 1) the Viterbi semiring Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 8 / 21
𝛻 ⊗ = { mul 𝕝 ( 𝕝 1 , … , 𝕝 𝑛 ) = 𝕝 ⊗ 𝕝 1 ⊗ ⋯ ⊗ 𝕝 𝑛 with 𝛻 med = { del , ins , rep = , rep ≠ , nil } Multioperator monoids (M-monoids) mul 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) Minimum edit distance M-monoid ({{𝑜} ∣ 𝑜 ∈ ℕ }, min ∘ ∪, ∅, 𝛻 med ) 0 , max , 0, 𝛻 mul ) Viterbi M-monoid ( ℝ 1 Examples (𝑛) 𝕝 ∣ 𝕝 ∈ 𝕃 , 𝑛 ∈ ℕ } Generalization of semirings (𝑛) M-monoid ( 𝕃 , ⊕ , 𝟙 , 𝛻 ⊗ ) where Semiring ( 𝕃 , ⊕ , ⊗ , 𝟙 , 𝟚 ) ⟶ ( 𝕃 , ⊕ , 𝟙 , 𝛻) ⟶ ( 𝕃 , ⊕ , ⊗ , 𝟙 , 𝟚 ) 9 / 21 binary ⊗ set of 𝑛 -ary operations 𝛻 (here: distributive)
with 𝛻 med = { del , ins , rep = , rep ≠ , nil } Multioperator monoids (M-monoids) Generalization of semirings 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) Minimum edit distance M-monoid ({{𝑜} ∣ 𝑜 ∈ ℕ }, min ∘ ∪, ∅, 𝛻 med ) 0 , max , 0, 𝛻 mul ) Viterbi M-monoid ( ℝ 1 Examples (𝑛) mul ∣ 𝕝 ∈ 𝕃 , 𝑛 ∈ ℕ } 𝕝 (𝑛) ⟶ ( 𝕃 , ⊕ , 𝟙 , 𝛻) ⟶ ( 𝕃 , ⊕ , ⊗ , 𝟙 , 𝟚 ) 9 / 21 binary ⊗ set of 𝑛 -ary operations 𝛻 (here: distributive) Semiring ( 𝕃 , ⊕ , ⊗ , 𝟙 , 𝟚 ) ⇝ M-monoid ( 𝕃 , ⊕ , 𝟙 , 𝛻 ⊗ ) where 𝛻 ⊗ = { mul 𝕝 ( 𝕝 1 , … , 𝕝 𝑛 ) = 𝕝 ⊗ 𝕝 1 ⊗ ⋯ ⊗ 𝕝 𝑛
Multioperator monoids (M-monoids) Generalization of semirings 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) Minimum edit distance M-monoid ({{𝑜} ∣ 𝑜 ∈ ℕ }, min ∘ ∪, ∅, 𝛻 med ) 0 , max , 0, 𝛻 mul ) Viterbi M-monoid ( ℝ 1 Examples (𝑛) mul ∣ 𝕝 ∈ 𝕃 , 𝑛 ∈ ℕ } 𝕝 (𝑛) ⟶ ( 𝕃 , ⊕ , 𝟙 , 𝛻) ⟶ ( 𝕃 , ⊕ , ⊗ , 𝟙 , 𝟚 ) 9 / 21 binary ⊗ set of 𝑛 -ary operations 𝛻 (here: distributive) Semiring ( 𝕃 , ⊕ , ⊗ , 𝟙 , 𝟚 ) ⇝ M-monoid ( 𝕃 , ⊕ , 𝟙 , 𝛻 ⊗ ) where 𝛻 ⊗ = { mul 𝕝 ( 𝕝 1 , … , 𝕝 𝑛 ) = 𝕝 ⊗ 𝕝 1 ⊗ ⋯ ⊗ 𝕝 𝑛 with 𝛻 med = { del , ins , rep = , rep ≠ , nil }
1.0 ⋅ 𝕝 1 ⋅ 𝕝 2 0.6 ⋅ 𝕝 1 ⋅ 𝕝 2 1 : T 𝛻 (terms) → ℝ 1 0 (weight algebra) 0.2 ⋅ 𝕝 1 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) (.) ℝ 0 0 , max , 0, 𝛻 mul ) ( ℝ 1 wt : 𝑆 (set of rules) → 𝛻 (set of operations) wt (𝑒) ∈ T 𝛻 wt … 1.0 Weight algebras S → 𝛽( NP , VP ) (.) 𝛦 ∗ Fruit flies … 𝑢 ∈ 𝑀(𝐻) ⊆ T 𝛵 𝜌 𝛵 … 𝛾 𝜀 𝛿 𝛽 𝑒 ∈ AST (𝐻) … VP → 𝛾( VBZ , PP ) NN → 𝜀 NP → 𝛿( NN ) 10 / 21
1.0 ⋅ 𝕝 1 ⋅ 𝕝 2 0.6 ⋅ 𝕝 1 ⋅ 𝕝 2 1 : T 𝛻 (terms) → ℝ 1 0 (weight algebra) 0.2 ⋅ 𝕝 1 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) (.) ℝ 0 0 , max , 0, 𝛻 mul ) ( ℝ 1 wt : 𝑆 (set of rules) → 𝛻 (set of operations) wt (𝑒) ∈ T 𝛻 wt … 1.0 Weight algebras S → 𝛽( NP , VP ) (.) 𝛦 ∗ Fruit flies … 𝑢 ∈ 𝑀(𝐻) ⊆ T 𝛵 𝜌 𝛵 … 𝛾 𝜀 𝛿 𝛽 𝑒 ∈ AST (𝐻) … VP → 𝛾( VBZ , PP ) NN → 𝜀 NP → 𝛿( NN ) 10 / 21
1 : T 𝛻 (terms) → ℝ 1 0 (weight algebra) Weight algebras S → 𝛽( NP , VP ) 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) (.) ℝ 0 0 , max , 0, 𝛻 mul ) ( ℝ 1 wt : 𝑆 (set of rules) → 𝛻 (set of operations) wt (𝑒) ∈ T 𝛻 wt … 1.0 0.2 ⋅ 𝕝 1 10 / 21 (.) 𝛦 ∗ Fruit flies … 𝑢 ∈ 𝑀(𝐻) ⊆ T 𝛵 𝜌 𝛵 … 𝛾 𝜀 𝛿 𝛽 𝑒 ∈ AST (𝐻) … VP → 𝛾( VBZ , PP ) NN → 𝜀 NP → 𝛿( NN ) 1.0 ⋅ 𝕝 1 ⋅ 𝕝 2 0.6 ⋅ 𝕝 1 ⋅ 𝕝 2
Weight algebras (.) 𝛦 ∗ 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) (.) ℝ 0 0 , max , 0, 𝛻 mul ) ( ℝ 1 wt : 𝑆 (set of rules) → 𝛻 (set of operations) wt (𝑒) ∈ T 𝛻 wt … 1.0 0.2 ⋅ 𝕝 1 S → 𝛽( NP , VP ) 10 / 21 Fruit flies … 𝑢 ∈ 𝑀(𝐻) ⊆ T 𝛵 NP → 𝛿( NN ) NN → 𝜀 VP → 𝛾( VBZ , PP ) … 𝑒 ∈ AST (𝐻) 𝛽 𝛿 𝜀 𝛾 … 𝜌 𝛵 1.0 ⋅ 𝕝 1 ⋅ 𝕝 2 0.6 ⋅ 𝕝 1 ⋅ 𝕝 2 1 : T 𝛻 (terms) → ℝ 1 0 (weight algebra)
Weight algebras (.) 𝛦 ∗ 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) (.) ℝ 0 0 , max , 0, 𝛻 mul ) ( ℝ 1 wt : 𝑆 (set of rules) → 𝛻 (set of operations) wt (𝑒) ∈ T 𝛻 wt … 1.0 0.2 S → 𝛽( NP , VP ) 10 / 21 Fruit flies … 𝑢 ∈ 𝑀(𝐻) ⊆ T 𝛵 NP → 𝛿( NN ) NN → 𝜀 VP → 𝛾( VBZ , PP ) … 𝑒 ∈ AST (𝐻) 𝛽 𝛿 𝜀 𝛾 … 𝜌 𝛵 1.0 ⋅ 𝕝 1 ⋅ 𝕝 2 0.6 ⋅ 𝕝 1 ⋅ 𝕝 2 1 : T 𝛻 (terms) → ℝ 1 0 (weight algebra)
Weight algebras S → 𝛽( NP , VP ) 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) (.) ℝ 0 0 , max , 0, 𝛻 mul ) ( ℝ 1 wt : 𝑆 (set of rules) → 𝛻 (set of operations) wt (𝑒) ∈ T 𝛻 wt 0.6 ⋅ … 1.0 0.2 (.) 𝛦 ∗ Fruit flies … 𝑢 ∈ 𝑀(𝐻) ⊆ T 𝛵 NP → 𝛿( NN ) NN → 𝜀 VP → 𝛾( VBZ , PP ) … 𝑒 ∈ AST (𝐻) 𝛽 𝛿 𝜀 𝛾 … 𝜌 𝛵 10 / 21 1.0 ⋅ 𝕝 1 ⋅ 𝕝 2 1 : T 𝛻 (terms) → ℝ 1 0 (weight algebra)
Weight algebras S → 𝛽( NP , VP ) 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) (.) ℝ 0 0 , max , 0, 𝛻 mul ) ( ℝ 1 wt : 𝑆 (set of rules) → 𝛻 (set of operations) wt (𝑒) ∈ T 𝛻 wt 0.6 ⋅ … 1.0 0.2 0.12 ⋅ … (.) 𝛦 ∗ Fruit flies … 𝑢 ∈ 𝑀(𝐻) ⊆ T 𝛵 𝜌 𝛵 … 𝛾 𝜀 𝛿 𝛽 𝑒 ∈ AST (𝐻) … VP → 𝛾( VBZ , PP ) NN → 𝜀 NP → 𝛿( NN ) 10 / 21 1 : T 𝛻 (terms) → ℝ 1 0 (weight algebra)
Weight algebras S → 𝛽( NP , VP ) 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) (.) ℝ 0 0 , max , 0, 𝛻 mul ) ( ℝ 1 wt : 𝑆 (set of rules) → 𝛻 (set of operations) 0 (.) ℝ 1 0.12 ⋅ … wt (𝑒) ∈ T 𝛻 wt … 1.0 0.2 ⋅ 𝕝 1 10 / 21 (.) 𝛦 ∗ NP → 𝛿( NN ) NN → 𝜀 VP → 𝛾( VBZ , PP ) … 𝑒 ∈ AST (𝐻) 𝛽 𝛿 𝜀 𝛾 … 𝜌 𝛵 𝑢 ∈ 𝑀(𝐻) ⊆ T 𝛵 Fruit flies … 1.0 ⋅ 𝕝 1 ⋅ 𝕝 2 0.6 ⋅ 𝕝 1 ⋅ 𝕝 2 1 : T 𝛻 (terms) → ℝ 1 0 (weight algebra)
ℒ A wRTG-LM is a tuple ( (𝐻 = (𝑂, 𝛵, 𝐵 0 , 𝑆)) Weighted RTG-based language models ⏟ ⏟ ⏟ ⏟ ⏟ ⏟ ⏟ RTG , ⏟ language algebra ), ( 𝕃 , ⊕ , 𝟙 , 𝛻) ⏟ M-monoid , wt ⏟ wt : 𝑆 → 𝛻 ) . Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 ⏟⏟ Defjnition (weighted RTG-based language model) S → 𝛽( NP , VP ) 𝜌 𝛵 NP → 𝛿( NN ) NN → 𝜀 VP → 𝛾( VBZ , PP ) … 𝑒 ∈ AST (𝐻) 𝛽 𝛿 𝜀 𝛾 … 𝑢 ∈ 𝑀(𝐻) ⊆ T 𝛵 (.) 𝛦 ∗ 0.2 ⋅ 𝕝 1 1.0 … wt wt (𝑒) ∈ T 𝛻 0.12 ⋅ … (.) ℝ 1 0 Fruit flies … 11 / 21 1.0 ⋅ 𝕝 1 ⋅ 𝕝 2 0.6 ⋅ 𝕝 1 ⋅ 𝕝 2
Weighted RTG-based language models language algebra ⏟ ⏟ ⏟ ⏟ ⏟ ⏟ ⏟ RTG , ⏟ ), S → 𝛽( NP , VP ) ( 𝕃 , ⊕ , 𝟙 , 𝛻) ⏟ M-monoid , wt ⏟ wt : 𝑆 → 𝛻 ) . Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 ⏟⏟ Defjnition (weighted RTG-based language model) (.) 𝛦 ∗ 𝑢 ∈ 𝑀(𝐻) ⊆ T 𝛵 NP → 𝛿( NN ) NN → 𝜀 VP → 𝛾( VBZ , PP ) … 𝑒 ∈ AST (𝐻) 𝛽 𝛿 𝜀 𝛾 … 𝜌 𝛵 11 / 21 0.2 ⋅ 𝕝 1 1.0 … wt wt (𝑒) ∈ T 𝛻 0.12 ⋅ … (.) ℝ 1 0 Fruit flies … 1.0 ⋅ 𝕝 1 ⋅ 𝕝 2 0.6 ⋅ 𝕝 1 ⋅ 𝕝 2 ℒ A wRTG-LM is a tuple ( (𝐻 = (𝑂, 𝛵, 𝐵 0 , 𝑆))
Outline 1 Weighted RTG-based language models 2 The weighted parsing problem 3 The weighted parsing algorithm Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 12 / 21
The weighted parsing problem 0.2 ⋅ 𝕝 1 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) (.) 𝛦 ∗ Fruit flies … 0 (.) ℝ 1 0.12 ⋅ … wt (𝑒) ∈ T 𝛻 wt … 1.0 13 / 21 S → 𝛽( NP , VP ) 𝑢 ∈ 𝑀(𝐻) ⊆ T 𝛵 𝜌 𝛵 … 𝛾 𝜀 𝛿 𝛽 𝑒 ∈ AST (𝐻) … VP → 𝛾( VBZ , PP ) NN → 𝜀 NP → 𝛿( NN ) 1.0 ⋅ 𝕝 1 ⋅ 𝕝 2 0.6 ⋅ 𝕝 1 ⋅ 𝕝 2
The weighted parsing problem S → 𝛽( NP , VP ) 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) (.) 𝛦 ∗ 𝜌 𝛵 (.) 𝛦 ∗ Fruit flies … 0 (.) ℝ 1 0.12 ⋅ … wt (𝑒) ∈ T 𝛻 wt … 1.0 0.2 ⋅ 𝕝 1 𝛿 NP → 𝛿( NN ) NN → 𝜀 VP → 𝛾( VBZ , PP ) … 𝑒 ∈ AST (𝐻) 𝛽 𝜀 𝛾 … 𝜌 𝛵 𝑢 ∈ 𝑀(𝐻) ⊆ T 𝛵 13 / 21 1.0 ⋅ 𝕝 1 ⋅ 𝕝 2 0.6 ⋅ 𝕝 1 ⋅ 𝕝 2 𝑢 ′ ∈ T 𝛵 𝑒 ′ ∈ AST (𝐻)
The weighted parsing problem (.) 𝛦 ∗ 0.12 ⋅ … (.) ℝ 1 0 Fruit flies … (.) 𝛦 ∗ 𝜌 𝛵 wt (𝑒 ′ ) ∈ T 𝛻 S → 𝛽( NP , VP ) wt 0.0144 (.) ℝ 1 0 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 wt (𝑒) ∈ T 𝛻 wt … 𝜀 NP → 𝛿( NN ) NN → 𝜀 VP → 𝛾( VBZ , PP ) … 𝑒 ∈ AST (𝐻) 𝛽 𝛿 𝛾 … 𝜌 𝛵 𝑢 ∈ 𝑀(𝐻) ⊆ T 𝛵 0.2 ⋅ 𝕝 1 1.0 13 / 21 1.0 ⋅ 𝕝 1 ⋅ 𝕝 2 0.6 ⋅ 𝕝 1 ⋅ 𝕝 2 𝑢 ′ ∈ T 𝛵 𝑒 ′ ∈ AST (𝐻)
The weighted parsing problem wt (𝑒 ′ ) ∈ T 𝛻 (.) ℝ 1 0 Fruit flies … (.) 𝛦 ∗ 𝜌 𝛵 (.) 𝛦 ∗ wt S → 𝛽( NP , VP ) 0.0144 (.) ℝ 1 0 ( ℝ 1 0 , max , 0, 𝛻 mul ) Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 0.12 ⋅ … wt (𝑒) ∈ T 𝛻 wt 𝛾 NP → 𝛿( NN ) NN → 𝜀 VP → 𝛾( VBZ , PP ) … 𝑒 ∈ AST (𝐻) 𝛽 𝛿 𝜀 … … 𝜌 𝛵 𝑢 ∈ 𝑀(𝐻) ⊆ T 𝛵 0.2 ⋅ 𝕝 1 1.0 13 / 21 1.0 ⋅ 𝕝 1 ⋅ 𝕝 2 0.6 ⋅ 𝕝 1 ⋅ 𝕝 2 𝑢 ′ ∈ T 𝛵 𝑒 ′ ∈ AST (𝐻)
The weighted parsing problem wt (𝑒 ′ ) ∈ T 𝛻 (.) ℝ 1 0 Fruit flies … (.) 𝛦 ∗ 𝜌 𝛵 (.) 𝛦 ∗ wt S → 𝛽( NP , VP ) 0.0144 (.) ℝ 1 0 ( ℝ 1 0 , max , 0, 𝛻 mul ) Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 0.12 ⋅ … wt (𝑒) ∈ T 𝛻 wt … NP → 𝛿( NN ) NN → 𝜀 VP → 𝛾( VBZ , PP ) … 𝑒 ∈ AST (𝐻) 𝛽 𝛿 𝜀 𝛾 … 𝜌 𝛵 𝑢 ∈ 𝑀(𝐻) ⊆ T 𝛵 0.2 ⋅ 𝕝 1 1.0 13 / 21 1.0 ⋅ 𝕝 1 ⋅ 𝕝 2 0.6 ⋅ 𝕝 1 ⋅ 𝕝 2 max { 𝑢 ′ ∈ T 𝛵 𝑒 ′ ∈ AST (𝐻)
The weighted parsing problem wt (.) ℝ 1 0 Fruit flies … (.) 𝛦 ∗ 𝜌 𝛵 (.) 𝛦 ∗ wt (𝑒 ′ ) ∈ T 𝛻 0.0144 wt (𝑒) ∈ T 𝛻 (.) ℝ 1 0 ( ℝ 1 0 , max , 0, 𝛻 mul ) parse Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 S → 𝛽( NP , VP ) 0.12 ⋅ … wt … NP → 𝛿( NN ) NN → 𝜀 VP → 𝛾( VBZ , PP ) … 𝑒 ∈ AST (𝐻) 𝛽 𝛿 𝜀 𝛾 … 𝜌 𝛵 𝑢 ∈ 𝑀(𝐻) ⊆ T 𝛵 0.2 ⋅ 𝕝 1 1.0 13 / 21 1.0 ⋅ 𝕝 1 ⋅ 𝕝 2 0.6 ⋅ 𝕝 1 ⋅ 𝕝 2 max { 𝑢 ′ ∈ T 𝛵 𝑒 ′ ∈ AST (𝐻)
The weighted parsing problem (.) ℝ 1 Fruit flies … (.) 𝛦 ∗ 𝜌 𝛵 (.) 𝛦 ∗ wt (𝑒 ′ ) ∈ T 𝛻 wt 0.0144 0 S → 𝛽( NP , VP ) ( ℝ 1 0 , max , 0, 𝛻 mul ) parse parse (𝑏) = ∑ ⊕ 𝑒∈ AST (𝐻,𝑏) wt (𝑒) Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 0 (.) ℝ 1 0.12 ⋅ … wt (𝑒) ∈ T 𝛻 NP → 𝛿( NN ) NN → 𝜀 VP → 𝛾( VBZ , PP ) … 𝑒 ∈ AST (𝐻) 𝛽 𝛿 𝜀 𝛾 … 𝜌 𝛵 𝑢 ∈ 𝑀(𝐻) ⊆ T 𝛵 0.2 ⋅ 𝕝 1 1.0 … wt 13 / 21 1.0 ⋅ 𝕝 1 ⋅ 𝕝 2 0.6 ⋅ 𝕝 1 ⋅ 𝕝 2 max { 𝑢 ′ ∈ T 𝛵 𝑒 ′ ∈ AST (𝐻)
The weighted parsing problem Algebraic dynamic programming (Giegerich, Meyer, and Stefgen 2004) 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) Shamir 1961) Reduct of a grammar and a syntactic object (cf. Bar-Hillel, Perles, and matrix chain multiplication minimum edit distance Parsing with superior grammars (Knuth 1977; Nederhof 2003) Examples 𝑜 best derivation(s) best derivation(s) derivation forest probability of best derivation string probability recognition Semiring parsing (Goodman 1999) 14 / 21
Outline 1 Weighted RTG-based language models 2 The weighted parsing problem 3 The weighted parsing algorithm Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 15 / 21
((𝐻, ℒ ), 𝕃 , wt ) - 𝑏 ∈ ℒ Weighted parsing algorithm Two-phase pipeline (Goodman 1999; Nederhof 2003) - wRTG-LM parse (𝑏) = ∑ ⊕ 𝑒∈ AST (𝐻,𝑏) wt (𝑒) Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 16 / 21
Weighted parsing algorithm Two-phase pipeline (Goodman 1999; Nederhof 2003) - wRTG-LM parse (𝑏) = ∑ ⊕ 𝑒∈ AST (𝐻,𝑏) wt (𝑒) Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 16 / 21 ((𝐻, ℒ ), 𝕃 , wt ) - 𝑏 ∈ ℒ
Weighted parsing algorithm Two-phase pipeline (Goodman 1999; Nederhof 2003) - wRTG-LM parse (𝑏) = ∑ ⊕ 𝑒∈ AST (𝐻,𝑏) wt (𝑒) canonical weighted deduction system Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 2019-09-25 16 / 21 ((𝐻, ℒ ), 𝕃 , wt ) - 𝑏 ∈ ℒ
Weighted parsing algorithm Two-phase pipeline (Goodman 1999; Nederhof 2003) 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) wRTG-LM system deduction weighted canonical wt (𝑒) 𝑒∈ AST (𝐻,𝑏) parse (𝑏) = ∑ ⊕ - wRTG-LM 16 / 21 ((𝐻, ℒ ), 𝕃 , wt ) ((𝐻 ′ , 𝒟ℱ ∅ ), 𝕃 , wt ′ ) - 𝑏 ∈ ℒ
Weighted parsing algorithm Two-phase pipeline (Goodman 1999; Nederhof 2003) 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) ? = wt ′ (𝑒) 𝑒∈ AST (𝐻 ′ ) ∑ ⊕ wRTG-LM system deduction weighted canonical wt (𝑒) 𝑒∈ AST (𝐻,𝑏) parse (𝑏) = ∑ ⊕ - wRTG-LM 16 / 21 ((𝐻, ℒ ), 𝕃 , wt ) ((𝐻 ′ , 𝒟ℱ ∅ ), 𝕃 , wt ′ ) - 𝑏 ∈ ℒ
Weighted parsing algorithm Two-phase pipeline (Goodman 1999; Nederhof 2003) 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) algorithm computation value ? = wt ′ (𝑒) 𝑒∈ AST (𝐻 ′ ) ∑ ⊕ 16 / 21 wRTG-LM system deduction weighted canonical wt (𝑒) 𝑒∈ AST (𝐻,𝑏) parse (𝑏) = ∑ ⊕ - wRTG-LM ((𝐻, ℒ ), 𝕃 , wt ) ((𝐻 ′ , 𝒟ℱ ∅ ), 𝕃 , wt ′ ) - 𝑏 ∈ ℒ
Weighted parsing algorithm 𝑒∈ AST (𝐻 ′ ) 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) ? = 0 ) 𝑊(𝐵 ′ algorithm computation value ? = wt ′ (𝑒) ∑ ⊕ Two-phase pipeline (Goodman 1999; Nederhof 2003) wRTG-LM system deduction weighted canonical wt (𝑒) 𝑒∈ AST (𝐻,𝑏) parse (𝑏) = ∑ ⊕ - wRTG-LM 16 / 21 ((𝐻, ℒ ), 𝕃 , wt ) ((𝐻 ′ , 𝒟ℱ ∅ ), 𝕃 , wt ′ ) - 𝑏 ∈ ℒ
Weighted parsing algorithm 𝑒∈ AST (𝐻 ′ ) 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) weighted parsing algorithm ? = 0 ) 𝑊(𝐵 ′ algorithm computation value ? = wt ′ (𝑒) ∑ ⊕ Two-phase pipeline (Goodman 1999; Nederhof 2003) wRTG-LM system deduction weighted canonical wt (𝑒) 𝑒∈ AST (𝐻,𝑏) parse (𝑏) = ∑ ⊕ - wRTG-LM 16 / 21 ((𝐻, ℒ ), 𝕃 , wt ) ((𝐻 ′ , 𝒟ℱ ∅ ), 𝕃 , wt ′ ) - 𝑏 ∈ ℒ
Canonical weighted deduction system Weight preserving 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) wt (𝑒) = wt ′ (𝜔(𝑒)) for every 𝑒 ∈ AST (𝐻, 𝑏) 2 Bijection 𝜔: AST (𝐻, 𝑏) → AST (𝐻 ′ ) 1 𝐵 → 𝜏(𝐵 1 , … , 𝐵 𝑛 ) is a rule { [𝐵 , 𝑏 0 ] Parsing as deduction (Shieber, Schabes, and Pereira 1995) cwds 17 / 21 - wRTG-LM ((𝐻, ℒ ), 𝕃 , wt ) wRTG-LM ((𝐻 ′ , 𝒟ℱ ∅ ), 𝕃 , wt ′ ) - 𝑏 ∈ ℒ [𝐵 1 , 𝑏 1 ] … [𝐵 𝑛 , 𝑏 𝑛 ] 𝑏 0 , 𝑏 1 , … , 𝑏 𝑛 ∈ factors (𝑏) 𝑏 0 = 𝜏(𝑏 1 , … , 𝑏 𝑛 )
Canonical weighted deduction system Weight preserving 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) wt (𝑒) = wt ′ (𝜔(𝑒)) for every 𝑒 ∈ AST (𝐻, 𝑏) 2 Bijection 𝜔: AST (𝐻, 𝑏) → AST (𝐻 ′ ) 1 𝐵 → 𝜏(𝐵 1 , … , 𝐵 𝑛 ) is a rule { [𝐵 , 𝑏 0 ] Parsing as deduction (Shieber, Schabes, and Pereira 1995) cwds 17 / 21 - wRTG-LM ((𝐻, ℒ ), 𝕃 , wt ) wRTG-LM ((𝐻 ′ , 𝒟ℱ ∅ ), 𝕃 , wt ′ ) - 𝑏 ∈ ℒ [𝐵 1 , 𝑏 1 ] … [𝐵 𝑛 , 𝑏 𝑛 ] 𝑏 0 , 𝑏 1 , … , 𝑏 𝑛 ∈ factors (𝑏) 𝑏 0 = 𝜏(𝑏 1 , … , 𝑏 𝑛 )
Canonical weighted deduction system Weight preserving 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) wt (𝑒) = wt ′ (𝜔(𝑒)) for every 𝑒 ∈ AST (𝐻, 𝑏) 2 Bijection 𝜔: AST (𝐻, 𝑏) → AST (𝐻 ′ ) 1 𝐵 → 𝜏(𝐵 1 , … , 𝐵 𝑛 ) is a rule { [𝐵 , 𝑏 0 ] Parsing as deduction (Shieber, Schabes, and Pereira 1995) cwds 17 / 21 - wRTG-LM ((𝐻, ℒ ), 𝕃 , wt ) wRTG-LM ((𝐻 ′ , 𝒟ℱ ∅ ), 𝕃 , wt ′ ) - 𝑏 ∈ ℒ [𝐵 1 , 𝑏 1 ] … [𝐵 𝑛 , 𝑏 𝑛 ] 𝑏 0 , 𝑏 1 , … , 𝑏 𝑛 ∈ factors (𝑏) 𝑏 0 = 𝜏(𝑏 1 , … , 𝑏 𝑛 )
Canonical weighted deduction system Weight preserving 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) wt (𝑒) = wt ′ (𝜔(𝑒)) for every 𝑒 ∈ AST (𝐻, 𝑏) 2 Bijection 𝜔: AST (𝐻, 𝑏) → AST (𝐻 ′ ) 1 17 / 21 { [𝐵 , 𝑏 0 ] Parsing as deduction (Shieber, Schabes, and Pereira 1995) cwds - wRTG-LM ((𝐻, ℒ ), 𝕃 , wt ) wRTG-LM ((𝐻 ′ , 𝒟ℱ ∅ ), 𝕃 , wt ′ ) - 𝑏 ∈ ℒ 𝐵 → 𝜏(𝐵 1 , … , 𝐵 𝑛 ) is a rule [𝐵 1 , 𝑏 1 ] … [𝐵 𝑛 , 𝑏 𝑛 ] 𝑏 0 , 𝑏 1 , … , 𝑏 𝑛 ∈ factors (𝑏) 𝑏 0 = 𝜏(𝑏 1 , … , 𝑏 𝑛 )
Canonical weighted deduction system Weight preserving 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) wt (𝑒) = wt ′ (𝜔(𝑒)) for every 𝑒 ∈ AST (𝐻, 𝑏) 2 Bijection 𝜔: AST (𝐻, 𝑏) → AST (𝐻 ′ ) 1 𝐵 → 𝜏(𝐵 1 , … , 𝐵 𝑛 ) is a rule { [𝐵 , 𝑏 0 ] Parsing as deduction (Shieber, Schabes, and Pereira 1995) cwds 17 / 21 - wRTG-LM ((𝐻, ℒ ), 𝕃 , wt ) wRTG-LM ((𝐻 ′ , 𝒟ℱ ∅ ), 𝕃 , wt ′ ) - 𝑏 ∈ ℒ [𝐵 1 , 𝑏 1 ] … [𝐵 𝑛 , 𝑏 𝑛 ] 𝑏 0 , 𝑏 1 , … , 𝑏 𝑛 ∈ factors (𝑏) 𝑏 0 = 𝜏(𝑏 1 , … , 𝑏 𝑛 )
Canonical weighted deduction system Weight preserving 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) wt (𝑒) = wt ′ (𝜔(𝑒)) for every 𝑒 ∈ AST (𝐻, 𝑏) 2 Bijection 𝜔: AST (𝐻, 𝑏) → AST (𝐻 ′ ) 1 𝐵 → 𝜏(𝐵 1 , … , 𝐵 𝑛 ) is a rule { [𝐵 , 𝑏 0 ] Parsing as deduction (Shieber, Schabes, and Pereira 1995) cwds 17 / 21 - wRTG-LM ((𝐻, ℒ ), 𝕃 , wt ) wRTG-LM ((𝐻 ′ , 𝒟ℱ ∅ ), 𝕃 , wt ′ ) - 𝑏 ∈ ℒ [𝐵 1 , 𝑏 1 ] … [𝐵 𝑛 , 𝑏 𝑛 ] 𝑏 0 , 𝑏 1 , … , 𝑏 𝑛 ∈ factors (𝑏) 𝑏 0 = 𝜏(𝑏 1 , … , 𝑏 𝑛 )
Weighted parsing algorithm 𝑒∈ AST (𝐻 ′ ) 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) weighted parsing algorithm ? = 0 ) 𝑊(𝐵 ′ algorithm computation value ? = wt ′ (𝑒) ∑ ⊕ Two-phase pipeline (Goodman 1999; Nederhof 2003) wRTG-LM system deduction weighted canonical wt (𝑒) 𝑒∈ AST (𝐻,𝑏) parse (𝑏) = ∑ ⊕ - wRTG-LM 18 / 21 ((𝐻, ℒ ), 𝕃 , wt ) ((𝐻 ′ , 𝒟ℱ ∅ ), 𝕃 , wt ′ ) - 𝑏 ∈ ℒ
Value computation algorithm 5: 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 12: until changed = false 𝑊(𝐵) ← 𝑊 new 11: changed ← true 10: 9: 8: 7: 6: changed ← false 𝑊(𝐵) ← 𝟙 0 , 𝑆 ′ ) Output: 𝑊(𝐵 ′ 0 ) 2: 19 / 21 3: repeat 4: Input: a wRTG-LM ((𝐻 ′ , 𝒟ℱ ∅ ), ( 𝕃 , ⊕ , 𝟙 , 𝛻), wt ′ ) with 𝐻 ′ = (𝑂 ′ , 𝛵 ′ , 𝐵 ′ Variables: 𝑊: 𝑂 ′ → 𝕃 , 𝑊 new ∈ 𝕃 , changed ∈ 1: for each 𝐵 ∈ 𝑂 ′ do for each 𝐵 ∈ 𝑂 ′ do 𝑊 new ← 𝟙 for each 𝑠 = (𝐵 → ⟨𝑦 1 … 𝑦 𝑛 ⟩(𝐵 1 , … , 𝐵 𝑛 )) in 𝑆 ′ do 𝑊 new ← 𝑊 new ⊕ wt ′ (𝑠)(𝑊(𝐵 1 ), … , 𝑊(𝐵 𝑛 )) if 𝑊(𝐵) ≠ 𝑊 new then
⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ … 𝜀 𝟙 𝟙 ( B A S 𝜏 𝛾 𝛿 S 𝛽 B A → 𝛾 − − − 𝟙 Value computation algorithm (example) 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 𝜕 3 () 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 − 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () − − − → 𝛿( A ) − − − − − − 𝜕 2 S − → 𝜀( B ) − − − − − − 𝜕 1 S − A 𝜕 3 − 𝜕 5 B → 𝜏( A , S ) − − − − − − 𝜕 4 B → 𝛽 − − − − − − − 20 / 21 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt )
⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ … 𝜀 𝟙 𝟙 ( B A S 𝜏 𝛾 𝛿 S 𝛽 B A → 𝛾 − − − 𝟙 Value computation algorithm (example) 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 𝜕 3 () 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 − 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () − − − → 𝛿( A ) − − − − − − 𝜕 2 S − → 𝜀( B ) − − − − − − 𝜕 1 S − A 𝜕 3 − 𝜕 5 B → 𝜏( A , S ) − − − − − − 𝜕 4 B → 𝛽 − − − − − − − 20 / 21 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt )
⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ … 𝜀 𝟙 𝟙 ( B A S 𝜏 𝛾 𝛿 S 𝛽 B A → 𝛾 − − − 𝟙 Value computation algorithm (example) 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 𝜕 3 () 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 − 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () − − − → 𝛿( A ) − − − − − − 𝜕 2 S − → 𝜀( B ) − − − − − − 𝜕 1 S − A 𝜕 3 − 𝜕 5 B → 𝜏( A , S ) − − − − − − 𝜕 4 B → 𝛽 − − − − − − − 20 / 21 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt )
⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ … 𝜀 𝟙 𝟙 ( B A S 𝜏 𝛾 𝛿 S 𝛽 B A → 𝛾 − − − 𝟙 Value computation algorithm (example) 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 𝜕 3 () 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 − 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () − − − → 𝛿( A ) − − − − − − 𝜕 2 S − → 𝜀( B ) − − − − − − 𝜕 1 S − A 𝜕 3 − 𝜕 5 B → 𝜏( A , S ) − − − − − − 𝜕 4 B → 𝛽 − − − − − − − 20 / 21 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt )
⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ … 𝜀 𝟙 𝟙 ( B A S 𝜏 𝛾 𝛿 S 𝛽 B A → 𝛾 − − − 𝟙 Value computation algorithm (example) 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 𝜕 3 () 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 − 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () − − − → 𝛿( A ) − − − − − − 𝜕 2 S − → 𝜀( B ) − − − − − − 𝜕 1 S − A 𝜕 3 − 𝜕 5 B → 𝜏( A , S ) − − − − − − 𝜕 4 B → 𝛽 − − − − − − − 20 / 21 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt )
⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ … 𝜀 𝟙 𝟙 ( B A S 𝜏 𝛾 𝛿 S 𝛽 B A → 𝛾 − − − 𝟙 Value computation algorithm (example) 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 𝜕 3 () 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 − 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () − − − → 𝛿( A ) − − − − − − 𝜕 2 S − → 𝜀( B ) − − − − − − 𝜕 1 S − A 𝜕 3 − 𝜕 5 B → 𝜏( A , S ) − − − − − − 𝜕 4 B → 𝛽 − − − − − − − 20 / 21 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt )
⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ … 𝜏 𝟙 𝟙 𝟙 ( B A S S 𝜀 𝛿 𝛾 𝛽 B A → 𝛾 − − ) Value computation algorithm (example) 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 𝜕 3 () 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 − 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () − − − S − − − − − − − 𝜕 2 → 𝛿( A ) A − − − − − − − 𝜕 1 S → 𝜀( B ) 𝜕 3 − − 𝜕 5 B → 𝜏( A , S ) − − − − − − − 𝜕 4 B → 𝛽 − − − − − − 20 / 21 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt )
⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) = ( ) ↦ ( ) = ( ) ↦ … 𝜀 𝟙 𝟙 ( B A S 𝜏 𝛾 𝛿 S 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 𝛽 B A → 𝛾 − − − 𝟙 Value computation algorithm (example) 𝜕 3 () 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 − ) − − − S − − − − − − − 𝜕 2 → 𝛿( A ) A − − − − − − − 𝜕 1 S → 𝜀( B ) 𝜕 3 20 / 21 − 𝜕 5 B → 𝜏( A , S ) − − − − − − − 𝜕 4 B → 𝛽 − − − − − − ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ) ↦ (
⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ↦ ( ) = ( ) ↦ … Value computation algorithm (example) 𝛿 𝟙 ( B A S 𝜏 𝜀 𝛾 S 𝟙 𝛽 B A → 𝛾 − − − 𝟙 𝕝 1 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 𝜕 3 () 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) ) 𝕝 3 𝕝 2 − 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () − − − S − − − − − − − 𝜕 2 → 𝛿( A ) 𝜕 3 − − − − − − − 𝜕 1 S → 𝜀( B ) A 20 / 21 − 𝜕 5 B → 𝜏( A , S ) − − − − − − 𝜕 4 B → 𝛽 − − − − − − − ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ) ↦ ( ) = (
⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ↦ ( ) = ( ) ↦ … Value computation algorithm (example) 𝛿 𝟙 ( B A S 𝜏 𝜀 𝛾 S 𝟙 𝛽 B A → 𝛾 − − − 𝟙 𝕝 1 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 𝜕 3 () 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) ) 𝕝 3 𝕝 2 − 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () − − − S − − − − − − − 𝜕 2 → 𝛿( A ) 𝜕 3 − − − − − − − 𝜕 1 S → 𝜀( B ) A 20 / 21 − 𝜕 5 B → 𝜏( A , S ) − − − − − − 𝜕 4 B → 𝛽 − − − − − − − ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ) ↦ ( ) = (
⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ↦ ( ) = ( ) ↦ … Value computation algorithm (example) 𝛿 𝟙 ( B A S 𝜏 𝜀 𝛾 S 𝟙 𝛽 B A → 𝛾 − − − 𝟙 𝕝 1 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 𝜕 3 () 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) ) 𝕝 3 𝕝 2 − 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () − − − S − − − − − − − 𝜕 2 → 𝛿( A ) 𝜕 3 − − − − − − − 𝜕 1 S → 𝜀( B ) A 20 / 21 − 𝜕 5 B → 𝜏( A , S ) − − − − − − 𝜕 4 B → 𝛽 − − − − − − − ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ) ↦ ( ) = (
⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ↦ ( ) = ( ) ↦ … Value computation algorithm (example) 𝛿 𝟙 ( B A S 𝜏 𝜀 𝛾 S 𝟙 𝛽 B A → 𝛾 − − − 𝟙 𝕝 1 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 𝜕 3 () 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) ) 𝕝 3 𝕝 2 − 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () − − − S − − − − − − − 𝜕 2 → 𝛿( A ) 𝜕 3 − − − − − − − 𝜕 1 S → 𝜀( B ) A 20 / 21 − 𝜕 5 B → 𝜏( A , S ) − − − − − − 𝜕 4 B → 𝛽 − − − − − − − ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ) ↦ ( ) = (
⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ↦ ( ) = ( ) ↦ … Value computation algorithm (example) 𝛿 𝟙 ( B A S 𝜏 𝜀 𝛾 S 𝟙 𝛽 B A → 𝛾 − − − 𝟙 𝕝 1 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 𝜕 3 () 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) ) 𝕝 3 𝕝 2 − 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () − − − S − − − − − − − 𝜕 2 → 𝛿( A ) 𝜕 3 − − − − − − − 𝜕 1 S → 𝜀( B ) A 20 / 21 − 𝜕 5 B → 𝜏( A , S ) − − − − − − 𝜕 4 B → 𝛽 − − − − − − − ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ) ↦ ( ) = (
⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) = ( ) ↦ … Value computation algorithm (example) S 𝟙 ( B A S 𝜏 𝜀 𝛿 𝛽 𝛾 𝟙 B A → 𝛾 − − − − 𝟙 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) ) 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 1 ) ⊕ 𝜕 5 () 𝜕 3 () 2 , 𝕝 ′ 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 − − − 20 / 21 S − − − − − − − 𝜕 2 → 𝛿( A ) A − − − − − − − 𝜕 1 S 𝜕 5 → 𝜀( B ) B → 𝛽 − − − − − 𝜕 4 𝜕 3 − − − − → 𝜏( A , S ) − − − B − − ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ) ↦ ( ) = ( ) ↦ (
⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) Value computation algorithm (example) S 𝟙 ( B A S 𝜏 𝜀 𝛿 𝛽 𝛾 𝟙 B A → 𝛾 − − − − 𝟙 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 1 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) ↦ … ) 3 𝕝 ′ 2 𝕝 ′ 𝕝 ′ 𝜕 3 () 1 ) ⊕ 𝜕 5 () 2 , 𝕝 ′ 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 − − − 20 / 21 → 𝛿( A ) − − − − − − 𝜕 2 S − 𝜕 5 − − − − − − 𝜕 1 S − → 𝜀( B ) A 𝜕 4 B → 𝜏( A , S ) − − − − − − − B → 𝛽 − − − − − − − 𝜕 3 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ) ↦ ( ) = ( ) ↦ ( ) = (
⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) Value computation algorithm (example) S 𝟙 ( B A S 𝜏 𝜀 𝛿 𝛽 𝛾 𝟙 B A → 𝛾 − − − − 𝟙 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 1 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) ↦ … ) 3 𝕝 ′ 2 𝕝 ′ 𝕝 ′ 𝜕 3 () 1 ) ⊕ 𝜕 5 () 2 , 𝕝 ′ 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 − − − 20 / 21 → 𝛿( A ) − − − − − − 𝜕 2 S − 𝜕 5 − − − − − − 𝜕 1 S − → 𝜀( B ) A 𝜕 4 B → 𝜏( A , S ) − − − − − − − B → 𝛽 − − − − − − − 𝜕 3 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ) ↦ ( ) = ( ) ↦ ( ) = (
⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) Value computation algorithm (example) S 𝟙 ( B A S 𝜏 𝜀 𝛿 𝛽 𝛾 𝟙 B A → 𝛾 − − − − 𝟙 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 1 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) ↦ … ) 3 𝕝 ′ 2 𝕝 ′ 𝕝 ′ 𝜕 3 () 1 ) ⊕ 𝜕 5 () 2 , 𝕝 ′ 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 − − − 20 / 21 → 𝛿( A ) − − − − − − 𝜕 2 S − 𝜕 5 − − − − − − 𝜕 1 S − → 𝜀( B ) A 𝜕 4 B → 𝜏( A , S ) − − − − − − − B → 𝛽 − − − − − − − 𝜕 3 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ) ↦ ( ) = ( ) ↦ ( ) = (
⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) Value computation algorithm (example) S 𝟙 ( B A S 𝜏 𝜀 𝛿 𝛽 𝛾 𝟙 B A → 𝛾 − − − − 𝟙 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 1 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) ↦ … ) 3 𝕝 ′ 2 𝕝 ′ 𝕝 ′ 𝜕 3 () 1 ) ⊕ 𝜕 5 () 2 , 𝕝 ′ 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 − − − 20 / 21 → 𝛿( A ) − − − − − − 𝜕 2 S − 𝜕 5 − − − − − − 𝜕 1 S − → 𝜀( B ) A 𝜕 4 B → 𝜏( A , S ) − − − − − − − B → 𝛽 − − − − − − − 𝜕 3 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ) ↦ ( ) = ( ) ↦ ( ) = (
⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) Value computation algorithm (example) S 𝟙 ( B A S 𝜏 𝜀 𝛿 𝛽 𝛾 𝟙 B A → 𝛾 − − − − 𝟙 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 1 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) ↦ … ) 3 𝕝 ′ 2 𝕝 ′ 𝕝 ′ 𝜕 3 () 1 ) ⊕ 𝜕 5 () 2 , 𝕝 ′ 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 − − − 20 / 21 → 𝛿( A ) − − − − − − 𝜕 2 S − 𝜕 5 − − − − − − 𝜕 1 S − → 𝜀( B ) A 𝜕 4 B → 𝜏( A , S ) − − − − − − − B → 𝛽 − − − − − − − 𝜕 3 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ) ↦ ( ) = ( ) ↦ ( ) = (
⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) Value computation algorithm (example) 𝛾 ( B A S 𝜏 𝜀 𝛿 S B 𝛽 𝟙 A → 𝛾 − − − − − 𝟙 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 𝟙 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 𝜕 5 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () 𝜕 3 () − − B → 𝛿( A ) − − − − − − 𝜕 2 S − → 𝜀( B ) − − − − − − 𝜕 1 S − 20 / 21 A 𝜕 3 → 𝜏( A , S ) − − − − − − − 𝜕 4 B → 𝛽 − − − − − − − ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ …
Value computation algorithm (example) 𝛽 B A S 𝜏 𝜀 𝛿 S 𝛾 B 𝟙 A → 𝛾 − − − − − − ( 𝟙 B 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 𝟙 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () 𝜕 3 () 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 𝜕 5 − → 𝜏( A , S ) → 𝛿( A ) − − − − − − 𝜕 2 S − − − − − − − − 𝜕 1 S − 20 / 21 → 𝜀( B ) → 𝛽 − − − − − − A B 𝜕 4 − − − − − − − 𝜕 3 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ …
Value computation algorithm (example) 𝛽 B A S 𝜏 𝜀 𝛿 S 𝛾 B 𝟙 A → 𝛾 − − − − − − ( 𝟙 B 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 𝟙 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () 𝜕 3 () 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 𝜕 5 − → 𝜏( A , S ) → 𝛿( A ) − − − − − − 𝜕 2 S − − − − − − − − 0.8⋅ 𝕝 1 S − 20 / 21 → 𝜀( B ) → 𝛽 − − − − − − A B 𝜕 4 − − − − − − − 𝜕 3 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ …
Value computation algorithm (example) 𝛽 B A S 𝜏 𝜀 𝛿 S 𝛾 B 𝟙 A → 𝛾 − − − − − − ( 𝟙 B 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 𝟙 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () 𝜕 3 () 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 𝜕 5 − → 𝜏( A , S ) → 𝛿( A ) − − − − − − 0.1⋅ 𝕝 1 S − − − − − − − − 0.8⋅ 𝕝 1 S − 20 / 21 → 𝜀( B ) → 𝛽 − − − − − − A B 𝜕 4 − − − − − − − 𝜕 3 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ …
Value computation algorithm (example) 𝛽 B A S 𝜏 𝜀 𝛿 S 𝛾 B 𝟙 A → 𝛾 − − − − − − ( 𝟙 B 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 𝟙 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () 𝜕 3 () 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 𝜕 5 − → 𝜏( A , S ) → 𝛿( A ) − − − − − − 0.1⋅ 𝕝 1 S − − − − − − − − 0.8⋅ 𝕝 1 S − 20 / 21 → 𝜀( B ) → 𝛽 − − − − − − A B 𝜕 4 − − − − − − − 0.5 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ …
Value computation algorithm (example) 𝛽 B A S 𝜏 𝜀 𝛿 S 𝛾 B 𝟙 A → 𝛾 − − − − − − ( 𝟙 B 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 𝟙 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () 𝜕 3 () 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 0.1 − → 𝜏( A , S ) → 𝛿( A ) − − − − − − 0.1⋅ 𝕝 1 S − − − − − − − − 0.8⋅ 𝕝 1 S − 20 / 21 → 𝜀( B ) → 𝛽 − − − − − − A B 0.7⋅ 𝕝 1 ⋅ 𝕝 2 − − − − − − − 0.5 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ …
Value computation algorithm (example) 𝛽 B A S 𝜏 𝜀 𝛿 S 𝛾 B 0 A → 𝛾 − − − − − − ( 0 B 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 0 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () 𝜕 3 () 𝜕 1 ( 𝟙 ) ⊕ 𝜕 2 ( 𝟙 ) 0.1 − → 𝜏( A , S ) → 𝛿( A ) − − − − − − 0.1⋅ 𝕝 1 S − − − − − − − − 0.8⋅ 𝕝 1 S − 20 / 21 → 𝜀( B ) → 𝛽 − − − − − − A B 0.7⋅ 𝕝 1 ⋅ 𝕝 2 − − − − − − − 0.5 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ …
Value computation algorithm (example) 𝛽 B A S 𝜏 𝜀 𝛿 S 𝛾 B 0 A → 𝛾 − − − − − − ( 0 B 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 0 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () 𝜕 3 () 0.8 ⋅ 0 max 0.1 ⋅ 0 0.1 − → 𝜏( A , S ) → 𝛿( A ) − − − − − − 0.1⋅ 𝕝 1 S − − − − − − − − 0.8⋅ 𝕝 1 S − 20 / 21 → 𝜀( B ) → 𝛽 − − − − − − A B 0.7⋅ 𝕝 1 ⋅ 𝕝 2 − − − − − − − 0.5 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ …
Value computation algorithm (example) 𝛽 B A S 𝜏 𝜀 𝛿 S 𝛾 B 0 A → 𝛾 − − − − − − ( 0 B 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 0 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () 𝜕 3 () 0 0.1 − → 𝜏( A , S ) → 𝛿( A ) − − − − − − 0.1⋅ 𝕝 1 S − − − − − − − − 0.8⋅ 𝕝 1 S − 20 / 21 → 𝜀( B ) → 𝛽 − − − − − − A B 0.7⋅ 𝕝 1 ⋅ 𝕝 2 − − − − − − − 0.5 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ …
Value computation algorithm (example) 𝛽 B A S 𝜏 𝜀 𝛿 S 𝛾 B 0 A → 𝛾 − − − − − − ( 0 B 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 0 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 𝜕 4 ( 𝕝 2 , 𝕝 1 ) ⊕ 𝜕 5 () 0.5 0 0.1 − → 𝜏( A , S ) → 𝛿( A ) − − − − − − 0.1⋅ 𝕝 1 S − − − − − − − − 0.8⋅ 𝕝 1 S − 20 / 21 → 𝜀( B ) → 𝛽 − − − − − − A B 0.7⋅ 𝕝 1 ⋅ 𝕝 2 − − − − − − − 0.5 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ …
Value computation algorithm (example) 𝛽 B A S 𝜏 𝜀 𝛿 S 𝛾 B 0 A → 𝛾 − − − − − − ( 0 B 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 0 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 0.7 ⋅ 0.5 ⋅ 0 max 0.1 0.5 0 0.1 − → 𝜏( A , S ) → 𝛿( A ) − − − − − − 0.1⋅ 𝕝 1 S − − − − − − − − 0.8⋅ 𝕝 1 S − 20 / 21 → 𝜀( B ) → 𝛽 − − − − − − A B 0.7⋅ 𝕝 1 ⋅ 𝕝 2 − − − − − − − 0.5 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ …
Value computation algorithm (example) 𝛽 B A S 𝜏 𝜀 𝛿 S 𝛾 B 0 A → 𝛾 − − − − − − ( 0 B 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 0 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 𝕝 3 𝕝 2 𝕝 1 0.1 0.5 0 0.1 − → 𝜏( A , S ) → 𝛿( A ) − − − − − − 0.1⋅ 𝕝 1 S − − − − − − − − 0.8⋅ 𝕝 1 S − 20 / 21 → 𝜀( B ) → 𝛽 − − − − − − A B 0.7⋅ 𝕝 1 ⋅ 𝕝 2 − − − − − − − 0.5 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) = ( ) ↦ ( ) = ( ) ↦ …
Value computation algorithm (example) B S 𝜏 𝜀 𝛿 S 𝛾 𝛽 A B → 𝛾 − − − − − − − A ( → 𝜏( A , S ) 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 0 𝜕 4 ( 𝕝 ′ 𝜕 3 () 𝜕 1 ( 𝕝 2 ) ⊕ 𝜕 2 ( 𝕝 3 ) 0.1 0.5 0 0 0 0.1 B − → 𝛿( A ) − − − − − 0.1⋅ 𝕝 1 S − − − − − − − − 0.8⋅ 𝕝 1 S − − → 𝜀( B ) − − − − − − 0.7⋅ 𝕝 1 ⋅ 𝕝 2 A → 𝛽 B − − − − − − 0.5 20 / 21 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) ↦ ( ) = ( ) ↦ …
Value computation algorithm (example) B S 𝜏 𝜀 𝛿 S 𝛾 𝛽 A B → 𝛾 − − − − − − − A ( → 𝜏( A , S ) 1 ) ⊕ 𝜕 5 () 2019-09-25 Richard Mörbitz, Heiko Vogler: Weighted parsing for grammar-based language models (FSMNLP 2019) 3 𝕝 ′ 2 𝕝 ′ 1 𝕝 ′ 2 , 𝕝 ′ 0 𝜕 4 ( 𝕝 ′ 𝜕 3 () 0.8 ⋅ 0.5 max 0.1 ⋅ 0.1 0.1 0.5 0 0 0 0.1 B − → 𝛿( A ) − − − − − 0.1⋅ 𝕝 1 S − − − − − − − − 0.8⋅ 𝕝 1 S − − → 𝜀( B ) − − − − − − 0.7⋅ 𝕝 1 ⋅ 𝕝 2 A → 𝛽 B − − − − − − 0.5 20 / 21 ((𝐻, 𝒟ℱ ∅ ), ( 𝕃 , 𝟙 , ⊕ , 𝛻), wt ) ⇝ ((𝐻, 𝒟ℱ ∅ ), ( ℝ 1 0 , 0, max , 𝛻 mul ), wt ) ) ↦ ( ) ↦ ( ) = ( ) ↦ …
Recommend
More recommend