weighted finite state transducer wfst
play

Weighted Finite State Transducer (WFST) Efficient algorithms for - PDF document

Prepared by Prof. Hui Jiang 12-11-21 (CSE6328) Weighted Finite State Transducer (WFST) Efficient algorithms for various operations. Weights Handle uncertainty in text, handwritten text, speech, image, biological sequences.


  1. Prepared by Prof. Hui Jiang 12-11-21 (CSE6328) Weighted Finite State Transducer (WFST) · Efficient algorithms for various operations. · Weights – Handle uncertainty in text, handwritten text, speech, image, biological sequences. · Applications: – Text: pattern-matching, indexation, compression. – Speech: speech recognition, speech synthesis. – Image: image compression, filters. Weighted Finite State Transducer (WFST) · Transducers: · Automata/Acceptors Dept. of CSE, York Univ. 1

  2. Prepared by Prof. Hui Jiang 12-11-21 (CSE6328) WFST Definition (I) · A path π : a sequence of transitions. – Original and destination states – Input and output labels · A semiring ≡ a ring without negation – Number set K. ⊕ ⊗ – Sum and Product . · Semiring examples: – Probability semiring: R, +, X. – Tropical semiring: R, min, +. WFST Definition (II) · General Definitions – Alphabets: input Σ , output Δ – States: Q , initial I , final F . – Transitions: E → Q * ( Σ U є ) * ( Δ U є ) * K * Q – Initial/Final weights: λ = I → K, ρ = F → K · WFST T = ( Σ , Q, I, F, E, λ , ρ ): [ ] = ⊕ λ π ⊗ π ⊗ ρ π T ( x , y ) ( p [ ]) w [ ] ( n [ ]) π ∈ P ( I , x , y , F ) ∈ Σ ∈ Δ * * for all x and y . Dept. of CSE, York Univ. 2

  3. Prepared by Prof. Hui Jiang 12-11-21 (CSE6328) WFST Operations · Sum · Product · Closure · Reversal · Composition · Determinization · Weight pushing · Minimization WFST Sum · Sum: [ ] [ ] [ ] ⊕ = ⊕ T T ( x , y ) T ( x , y ) T ( x , y ) 1 2 1 2 Dept. of CSE, York Univ. 3

  4. Prepared by Prof. Hui Jiang 12-11-21 (CSE6328) WFST Product · Product: [ ] [ ] [ ] ⊗ = ⊕ ⊗ T T ( x , y ) T ( x , y ) T ( x , y ) 1 2 1 1 1 2 2 2 = = x x x , y y y 1 2 1 2 WFST Closure · Closure: [ ] ∞ [ ] = ⊕ n * T ( x , y ) T ( x , y ) = n 0 Dept. of CSE, York Univ. 4

  5. Prepared by Prof. Hui Jiang 12-11-21 (CSE6328) WFST Reversal · Reversal: [ ] ~ [ ] ~ ~ = T ( x , y ) T ( x , y ) WFST Composition · Composition: [ ] [ ] = ⊕ ⊗ T  T ( x , y ) T ( x , z ) [ T ]( z , y ) 1 2 1 2 z Dept. of CSE, York Univ. 5

  6. Prepared by Prof. Hui Jiang 12-11-21 (CSE6328) WFST Composition Algorithm WFST Determinization · Deterministic WFST: no common input label for all outgoing transitions from any state. · Determinimization: determinizable WFST  deterministic W. Dept. of CSE, York Univ. 6

  7. Prepared by Prof. Hui Jiang 12-11-21 (CSE6328) WFST Determinization Algorithm WFST Weights Pushing · Weight pushing: re-distribute all weights along paths. Dept. of CSE, York Univ. 7

  8. Prepared by Prof. Hui Jiang 12-11-21 (CSE6328) WFST Minimization · Minimize number of states and transitions of a deterministic WFST. WFST Operations · Composition: C = A ○ B · Determinization: D = det(C) – deterministic automaton: every state has at most one out-going transition with any given label. · Re-weighting (Weight pushing): E = push(D) · Minimization: F = min(E) Dept. of CSE, York Univ. 8

  9. Prepared by Prof. Hui Jiang 12-11-21 (CSE6328) WFST Operations: Examples det push min WFST Applications · String search/match · String conversion/ language normalization · Representing Language models and probabilistic grammar · Sentence generation Dept. of CSE, York Univ. 9

  10. Prepared by Prof. Hui Jiang 12-11-21 (CSE6328) Example I: keyword detection Example I: keyword detection: tabular search Dept. of CSE, York Univ. 10

  11. Prepared by Prof. Hui Jiang 12-11-21 (CSE6328) Example I: keyword detection: Automata Search Example I: keyword detection: Deterministic Search Dept. of CSE, York Univ. 11

  12. Prepared by Prof. Hui Jiang 12-11-21 (CSE6328) Example I: keyword detection: Minimal Deterministic Search Example II: Context-dependent Phones · Monophone vs. Triphone · Sentence: How do they turn out later ? · Monophones: h aw d uh dh eh t er n aw t l ai t er · Triphones: <s>-h+aw h-aw+d aw-d+uh d-uh+dh uh-dh+eh … · WFST: mapping context-independent monophones to context-dependent triphones Dept. of CSE, York Univ. 12

  13. Prepared by Prof. Hui Jiang 12-11-21 (CSE6328) Example II: Context-dependent Phones · A simple example with only two symbols x,y: Example III: Representing Language model · Representing language models as WFST · Representing HMMs as WFST · Representing overall grammar as WFST · Come back later … Dept. of CSE, York Univ. 13

Recommend


More recommend