vorticity in atomic nuclei
play

Vorticity in atomic nuclei V.O. Nesterenko J. Kvasil, A. Repko - PowerPoint PPT Presentation

Vorticity in atomic nuclei V.O. Nesterenko J. Kvasil, A. Repko Institute of Particle and Nuclear Physics, Charles University, Praha , Czech Republic W. Kleinig Laboratory of Theoretical Physics, JINR; Technical University of Dresden,


  1. Vorticity in atomic nuclei V.O. Nesterenko J. Kvasil, A. Repko Institute of Particle and Nuclear Physics, Charles University, Praha , Czech Republic W. Kleinig Laboratory of Theoretical Physics, JINR; Technical University of Dresden, Institute for Analysis, Dresden, Germany P.-G. Reinhard Institute of Theoretical Physics II, University of Erlangen, Erlangen, Germany BLTP, JINR, 05.12.2012

  2. Introduction 1 Nuclei demonstrate both - irrotational flow    w r ( ) v r ( ) 0 examples: most of electric giant resonances (GR) - vortical flow    w r ( ) v r ( ) 0 examples: - nuclear rotation of deformed nuclei, - s-p excitations, - toroidal E1 GR - rotation-like oscillations - twist M2 GR Twist M2 Toroidal E1

  3. Introduction 2 w r ( ) Vorticity is a fundamental quantity:     j 0 - does not contribute to the continuity equation, nuc - represents an independent part of charge-current distribution beyond the continuity equation. Vorticity is related to the exotic E1 modes of high interest: - toroidal second-order GR ISGDR - compression - pygmy N. Paar, D. Vretenar, E. Kyan, G. Colo, RPP, 70 691 (2007).  2 ( kr ) ( kr ) Beyond    j ( kr ) [1 ]      long-wave approximation: (2 1)!! 2(2 3) Leading dipole modes in T=0 channel !!! Manifestation of nuclear elasticity (toroidal, twist, …) May exist in other systems (atomic clusters, …) VON et al, PRL, 85 , 3141 (2000)

  4. Interplay of pygmy, toroidal, and compression flows in the PDR region? Skyrme-RPA calculations A. Repko, P.G. Reinhard, VON, J. Kvasil, to be submitted MeV

  5. Theoretical studies: Many publications on toroidal and compressional (ISGDR) modes and manifestations of vorticity: V.M. Dubovik and A.A. Cheshkov, SJPN 5, 318 (1975). M.N. Harakeh et al, PRL 38, 676 (1977). S.F. Semenko, SJNP 34 356 (1981). J. Heisenberg, Adv. Nucl. Phys. 12, 61 (1981). S. Stringari, PLB 108, 232 (1982). E. Wust et al, NPA 406, 285 (1983). E.E. Serr, T.S. Dumitrescu, T.Suzuki, NPA 404 359 (1983). D.G.Raventhall, J.Wambach, NPA 475, 468 (1987). E.B. Balbutsev and I.N. Mikhailov, JPG 14, 545 (1988). S.I. Bastrukov, S. Misicu, A. Sushkov, NPA 562, 191 (1993). I. Hamamoto, H.Sagawa, X.Z. Zang, PRC 53 765 (1996). E.C.Caparelli, E.J.V.de Passos, JPG 25, 537 (1999). N.Ryezayeva et al, PRL 89, 272502 (2002). G.Colo, N.Van Giai, P.Bortignon, M.R.Quaglia, PLB 485, 362 (2000). D. Vretenar, N. Paar, P. Ring,T. Nikshich, PRC 65, 021301(R) (2002). V.Yu. Ponomarev, A.Richter, A.Shevchenko, S.Volz, J.Wambach, PRL 89, 272502 (2002). J. Kvasil, N. Lo Iudice, Ch. Stoyanov, P. Alexa, JPG 29, 753 (2003). A. Richter, NPA 731, 59 (2004). X. Roca-Maza et al, PRC 85, 024601 (2012). ………. Recent N. Paar, D. Vretenar, E. Kyan, G. Colo, Rep. Prog. Phys. 70 691 (2007). review J. Kvasil, VON, W. Kleinig, P.-G. Reinhard, P. Vesely, PRC, 84, 034303 (2011)

  6. J. Kvasil, VON, W. Kleinig, P.-G. Reinhard, Content P. Vesely, PRC, 84, 034303 (2011) P.G. Reinhard, V.O. Nesterenko, J. Kvasl, A. Repko, to be submitted - Two definitions of vorticity in nuclear physics: - hydrodynamical (HD) - Rawenhall – Wambach (RW) - Theory: derivation of operators for toroidal and compression modes ˆ ˆ ˆ       j M ( E ) M ( E ) M ( E ) vor tor com - Numerical results for vortical, toroidal and compression responses - strength functions, transition densities, velocity fields - role of convection and magnetization (spin) nuclear current - Perspective to observe the vortical E1 GR in experiment? -Twist M2 GR

  7. May we use, in analogy to HD,   j r ( ) v r ( ) 0  j r ( )     j r ( ) v r ( ) 0 as a measure of the nuclear vorticity? No, because:   1) and are very different values v r ( ) j r ( )          j ( ) r ( ) r j ( ) r ( ) r j ( ) r      nuc 0 nuc 0 nuc v r ( ) v r ( )   2 ( ) r ( ) r 0 0 2) Multipole electric operator    ˆ (2 1)!! ˆ (       M Ek ) dr j ( kr Y ) [ j ( ) ] r       nuc 1 c k 1  j r ( ) If to use as a measure of vorticity, then all the electric modes would be vortical. But this contradicts numerous exper. data:, e.g. for electric GR.

  8. Two conceptions of vorticity in nuclear theory: 1. Hydrodynamical vorticity:  j ( ) r     w r ( ) v r ( ) nuc v r ( )  ( ) r 0         ( j ) ( )( r v ) ( ) r w r ( ) nuc 0 0 j D.G.Raventhall, J.Wambach, 2. Wambach vorticity vorticity  NPA 475, 468 (1987).     j 0 - continuity equation nuc  ˆ ( j m | j m )      ( ) fi * ( ) fi * i i f f j ( ) r j m | j ( )| r j m [ j ( ) r Y j ( ) r Y ]           ( fi ) f f nuc i i 1 1 1 1  2 j 1  f ˆ i - current transition          * * j ( ) r | j ( )| 0 r [ j ( ) r Y j ( ) r Y ]   density  1 nuc 10 10 12 12 3 j j    j  ( ) r - independent part of charge-current distribution, decoupled to CE - may be the measure of the vorticity HD and j+ prescriptions give opposite conclusions on CM vorticity!

  9. Definition 2 D.G.Raventhall, J.Wambach, (Ravenhall and Wambach) NPA 475, 468 (1987).  ˆ ( j m | j m )      ( ) fi * ( ) fi * i i f f j ( ) r j m | j ( )| r j m [ j ( ) r Y j ( ) r Y ]           ( fi ) f f nuc i i  1 1 1 1 2 j 1  f  ( j m | j m )       ˆ ( ) fi * i i f f ( ) r j m | ( )| r j m ( ) r Y   ( fi ) f f nuc i i  2 j 1  f          j 0 i j 0 nuc fi fi            d 1 1 d 2      i ( ) r   j ( ) r   j ( ) r            1 1     2 1 dr 2 1 dr                 2 1 dr r ( ) r (2 1) dr r j ( ) r     ( ) fi 1 j 1 ( ) r So just   0 0 - is decoupled to CE    d       - has to be chosen as 1 1 dr r j ( ) r lim r j ( ) r      1 r 1 dr measure of vorticity 0

  10.   How to cure to make it indeed vortical? j ( fi )   j How to decouple from the CE? ( fi )  ( j m | j m )     ( ) fi * i i f f j ( ) r T ( ) r Y   ( fi )  2 j 1  f            1 d 1 d 2     T ( ) r   j ( ) r   j ( ) r            1 1     2 1 dr 2 1 dr       1           2 2 dr r T ( ) r dr r ( ) r      0 0 Thus we get the vorticity      ( ) r j ( ) r S transition density ( fi ) ( fi )      1 ( j m | j m ) 1      ( ) fi ( ) fi   ( ) r T ( ) r ( ) r ( ) fi * i i f f S ( ) r ( ) r Y        ( fi )  2 j 1  f        ( j m | j m )  2 dr r ( ) r 0    ( ) fi * i i f f ( ) r ( ) r Y    ( fi )  0 2 j 1  f

  11. Definition 2 D.G.Raventhall, J.Wambach, (Ravenhall and Wambach) NPA 475, 468 (1987). One may construct the vorticity transition density       2 1 d 2    ( ) r j ( r )        1   dr r and strength        ( ) fi 4 ( ) fi r ( ) r dr   0 ( ) fi j 1 ( ) r expressed through the particular transverse current multipole ,   ( ) fi which, unlike , does not contribute to the continuity equation j 1 ( ) r       j 0 nuc ( ) fi j 1 ( ) r So, is an independent part of charge-current distribution.   This approach does not use the vortical operator. However, such operator could be useful for the comparison of vortical, toroidal and compression flows.

Recommend


More recommend