voronoi diagram on a riemannian surface
play

Voronoi diagram on a Riemannian surface Aur elie Chapron ModalX - PowerPoint PPT Presentation

Case of the sphere Arbitrary surface Conclusion Voronoi diagram on a Riemannian surface Aur elie Chapron ModalX (Paris Ouest) and LMRS (Rouen) 17 May 2016 Aur elie Chapron ModalX (Paris Ouest) and LMRS (Rouen) Voronoi diagram on


  1. Case of the sphere Arbitrary surface Conclusion Voronoi diagram on a Riemannian surface Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) 17 May 2016 Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) Voronoi diagram on a Riemannian surface

  2. Case of the sphere Arbitrary surface Conclusion Motivation Aim : Show a link between mean characteristics of the Voronoi cells and local characteristics of the surface image:R.Kunze Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) Voronoi diagram on a Riemannian surface

  3. Case of the sphere Arbitrary surface Conclusion Framework S Riemannian surface, with its Riemannian metric d , dx area measure induced by the metric, Φ Poisson point process of intensity λ dx and x 0 ∈ S added to Φ, The Voronoi cell of x 0 defined by C ( x 0 , Φ) = { y ∈ S , d ( x 0 , y ) ≤ d ( x , y ) , ∀ x ∈ Φ } N the number of vertices. Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) Voronoi diagram on a Riemannian surface

  4. Case of the sphere Arbitrary surface Conclusion Outline Case of the sphere 1 Arbitrary surface 2 Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) Voronoi diagram on a Riemannian surface

  5. Case of the sphere Arbitrary surface Conclusion Mean number of vertices wlog, assume x 0 to be the North pole on the sphere of constant 1 curvature K (of radius K ) √ E [ N ( C )] = 6 − 3 K � 3 K � πλ + e − 4 πλ πλ + 6 K Miles (1971) : n uniform points on the sphere Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) Voronoi diagram on a Riemannian surface

  6. Case of the sphere Arbitrary surface Conclusion Sketch of proof Step 1: characterize vertices of C Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) Voronoi diagram on a Riemannian surface

  7. Case of the sphere Arbitrary surface Conclusion Sketch of proof    � E [ N ( C )] = E 1 {B 1 ( x 0 , x 1 , x 2 ) ∩ Φ= ∅} + 1 {B 2 ( x 0 , x 1 , x 2 ) ∩ Φ= ∅}  x 1 , x 2 ∈ Φ Step 1: characterize vertices of C Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) Voronoi diagram on a Riemannian surface

  8. Case of the sphere Arbitrary surface Conclusion Sketch of proof E [ N ( C )] = λ 2 �� � e − λ vol( B 1 ( x 0 , x 1 , x 2 )) + e − λ vol( B 2 ( x 0 , x 1 , x 2 )) � dx 1 dx 2 2 x 1 , x 2 ∈S ( K ) Step 2: apply Mecke-Slivnyak formula Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) Voronoi diagram on a Riemannian surface

  9. Case of the sphere Arbitrary surface Conclusion Sketch of proof E [ N ( C )] = λ 2 � � e − λ vol( B 1 ( x 0 , x 1 , x 2 )) + e − λ vol( B 2 ( x 0 , x 1 , x 2 )) � 2 r 1 ,ϕ 1 , r 2 ,ϕ 2 √ √ × sin( Kr 1 ) sin( Kr 2 ) dr 1 d ϕ 1 dr 2 d ϕ 2 √ √ K K Step 3: use spherical coordinates Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) Voronoi diagram on a Riemannian surface

  10. Case of the sphere Arbitrary surface Conclusion Sketch of proof √ 2 � θ 1 � r 1 = √ arcsin(sin sin( KR )) 2 K √ 2 � θ 2 � r 2 = √ arcsin(sin sin( KR )) 2 K √ ϕ 1 = ϕ + π � θ 1 � 2 − arctan(tan cos( KR )) 2 √ ϕ 2 = ϕ + π � θ 2 � 2 − arctan(tan cos( KR )) 2 Step 4: make a Blaschke-Petkantschin type change of variables Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) Voronoi diagram on a Riemannian surface

  11. Case of the sphere Arbitrary surface Conclusion Sketch of proof √ KR )) � sin 3 ( π √ √ � KR ) KR )) + e − λ 2 π √ � e − λ 2 π 2 K E [ N ( C )] = 4 πλ 2 I K (1 − cos( K (1+cos( √ dR K 0 = 6 − 3 K � 6 + 3 K � πλ + e − 4 λπ K λπ where � θ 1 � � θ 2 � � � θ 1 − θ 2 �� � � � I = sin sin � sin � d θ 1 d θ 2 � � 2 2 2 θ 1 ,θ 2 ∈ [0 , 2 π ] Step 4: Make a Blaschke-Petkantschin type change of variables Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) Voronoi diagram on a Riemannian surface

  12. Case of the sphere Arbitrary surface Conclusion Strategy Find a way to adapt the method to a general surface Step 1: characterize vertices of C Step 2: apply Mecke-Slivnyak formula Step 3: use geodesic polar coordinates Step 4: make a Blaschke-Petkantschin type change of variables Step 5: find the volume of a geodesic ball image:R.Kunze Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) Voronoi diagram on a Riemannian surface

  13. Case of the sphere Arbitrary surface Conclusion Sketch of proof    � � E [ N ( C )] = E 1 {B ( x 0 , x 1 , x 2 ) ∩ Φ= ∅}  x 1 , x 2 ∈ Φ circumscribed balls Step 1: characterize vertices of C Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) Voronoi diagram on a Riemannian surface

  14. Case of the sphere Arbitrary surface Conclusion Sketch of proof E [ N ( C )] = λ 2 �� � e − λ vol( B ( x 0 , x 1 , x 2 )) dx 1 dx 2 2 x 1 , x 2 ∈ S circumscribed balls 1 Points ”far” from x 0 contribute negligibly. 2 For points around x 0 , we need similar changes of variables. Step 2: apply Mecke Slivnyak formula Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) Voronoi diagram on a Riemannian surface

  15. Case of the sphere Arbitrary surface Conclusion Exponential map Around x 0 , S can always be parametrized by its geodesic polar coordinates ( r , ϕ ), ie x = exp x 0 ( ru ϕ ) Step 3: use geodesic polar coordinates Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) Voronoi diagram on a Riemannian surface

  16. Case of the sphere Arbitrary surface Conclusion Rauch theorem dx = f ( r , ϕ ) drd ϕ Let K denote the Gaussian curvature. Rauch theorem (1951) Si 0 < δ ≤ K ≤ ∆ √ √ sin( ∆ r ) ≤ f ( r , ϕ ) ≤ sin( δ r ) √ √ ∆ δ Application: δ = K ( x 0 ) − ε , ∆ = K ( x 0 ) + ε Step 3: use geodesic polar coordinates Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) Voronoi diagram on a Riemannian surface

  17. Case of the sphere Arbitrary surface Conclusion Sketch of proof E [ N ( C )] = λ 2 � e − λ vol( B ( x 0 , x 1 , x 2 )) 2 ( r 1 ,ϕ 1 ) ( r 2 ,ϕ 2 ) r 1 − K ( x 0 ) r 3 r 2 − K ( x 0 ) r 3 dr 1 d ϕ 1 dr 2 d ϕ 2 + O ( e − c λ ) � � � � × + o ( r 3 + o ( r 3 1 1 ) 2 2 ) 6 6 Step 3: use geodesic polar coordinates Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) Voronoi diagram on a Riemannian surface

  18. Case of the sphere Arbitrary surface Conclusion Sketch of proof r 1 =? r 2 =? ϕ 1 =? ϕ 2 =? Step 4: make a Blaschke-Petkantschin type change of variables Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) Voronoi diagram on a Riemannian surface

  19. Case of the sphere Arbitrary surface Conclusion Toponogov theorem If δ ≤ K ≤ ∆ Step 4: make a Blaschke-Petkantschin type change of variables Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) Voronoi diagram on a Riemannian surface

  20. Case of the sphere Arbitrary surface Conclusion Sketch of proof r 1 = 2 sin( θ 1 / 2) R − K ( x 0 ) R 3 sin( θ 1 / 2) cos 2 ( θ 1 / 2) + o ( R 3 ) 3 r 2 = 2 sin( θ 2 / 2) R − K ( x 0 ) R 3 sin( θ 2 / 2) cos 2 ( θ 2 / 2) + o ( R 3 ) 3 2 + K ( x 0 ) R 2 ϕ 1 = ϕ + π 2 − θ 1 sin( θ 1 ) + o ( R 2 ) 4 2 + K ( x 0 ) R 2 ϕ 2 = ϕ + π 2 − θ 2 sin( θ 2 ) + o ( R 2 ) 4 Step 4: make a Blaschke-Petkantschin type change of variables Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) Voronoi diagram on a Riemannian surface

  21. Case of the sphere Arbitrary surface Conclusion Sketch of proof � � E [ N ( C )] = 2 λ 2 I e − λ vol( B ( z , R )) � R 3 − K ( x 0 ) R 5 � dRd ϕ + O ( e − c λ ) + o ( R 5 ) 2 R ϕ where � � �� � � θ 1 � � θ 2 � θ 1 − θ 2 � � I = sin sin � sin � d θ 1 d θ 2 � � 2 2 2 θ 1 ,θ 2 Step 4: make a Blaschke-Petkantschin type change of variables Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) Voronoi diagram on a Riemannian surface

  22. Case of the sphere Arbitrary surface Conclusion Volume of small geodesic balls Bertrand-Diquet-Puiseux theorem (1848) When r → 0, x ∈ S vol( B ( z , r )) = π r 2 − K ( z ) π r 4 + o ( r 4 ) 12 Step 5: find the volume of the circumscribed ball Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) Voronoi diagram on a Riemannian surface

  23. Case of the sphere Arbitrary surface Conclusion Result e − λ ( π R 2 − π K ( x 0) R 4 E [ N ( C )] = 12 π 2 λ 2 � R max + o ( R 4 )) × [ R 3 − K ( x 0 ) R 5 + o ( R 5 )] dR + O ( e − c λ ) 12 2 0 When λ goes to infinity, Laplace’s method yields Mean number of vertices � 1 � E [ N ( C )] = 6 − 3 K ( x 0 ) + o πλ λ Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) Voronoi diagram on a Riemannian surface

  24. Case of the sphere Arbitrary surface Conclusion Take Home Message On surfaces: ֒ → Link between mean number of vertices and Gaussian curvature ֒ → Result available for surface of negative curvature (Isokawa 2000) ֒ → Other mean characteristics: area, perimeter Ongoing work on dimension ≥ 3 : ֒ → Link between mean number of vertices and scalar curvature ֒ → Perspective: other characteristics to get other curvatures ֒ → . . . Aur´ elie Chapron Modal’X (Paris Ouest) and LMRS (Rouen) Voronoi diagram on a Riemannian surface

Recommend


More recommend