vk computer games
play

VK Computer Games Mathias Lux & Horst Pichler Universitt - PowerPoint PPT Presentation

VK Computer Games Mathias Lux & Horst Pichler Universitt Klagenfurt This work is licensed under a Creative Commons Attribution-NonCommercial- ShareAlike 2.0 License. See http://creativecommons.org/licenses/by-nc-sa/2.0/at/ Agenda http://


  1. VK Computer Games Mathias Lux & Horst Pichler Universität Klagenfurt This work is licensed under a Creative Commons Attribution-NonCommercial- ShareAlike 2.0 License. See http://creativecommons.org/licenses/by-nc-sa/2.0/at/

  2. Agenda http:// www.uni-klu.ac.at ● Collision Detection ● Game Framework � Sprites � Sprite-behavior � Bricks ● Short Introduction into AI ● Your Game … some advices 2

  3. The Game Loop Revisited http:// www.uni-klu.ac.at � Double Buffering with repaint-method 3

  4. Collision Detection http:// www.uni-klu.ac.at ● Detect if two objects try to occupy the same space at the same time (overlap) ● Needed in � physical simulations � computational geometry • CAD • GIS � robotics � computer games 4 [ www.vis.uni-stuttgart.de/~frisch/h/diss.htm ]

  5. Game Loop + Collision http:// www.uni-klu.ac.at Remark: example assumes, that there is no z-axis 5

  6. Detection Types http:// www.uni-klu.ac.at ● a priori � predict upcoming collision � objects never really penetrate � respond to collision before it occurred ● a posteriori � advance movement by small time step � check if collision occurs � respond to collision after it occurred � much easier; used in games 6

  7. 2D Games with Static Arrays http:// www.uni-klu.ac.at Object moves 1 field per round Collision: (x1‘ == x1) and (y1‘ == y2) 7

  8. Circles http:// www.uni-klu.ac.at objects move n pixels per loop collision detection with Pythagoras: V = sqrt( (x2-x1) 2 + (y2-y1) 2 ) if V < r1 + r2 � collision 8

  9. Problems with Circles http:// www.uni-klu.ac.at ● Easy to calculate, but … ● Bounding box Bounding Volume 9

  10. Rectangles http:// www.uni-klu.ac.at Object moves n pixels per loop Collision detection: „inelegant“ approach check possible combinations of lines [ A1B1xA2D2, A1B1xB2C2, … ] if lines cut � collission 10

  11. Example http:// www.uni-klu.ac.at Collision detected Collision detected Collision detected B1C1xA2D2 C1D1xA2B2 C1D1xA2B2 � bounce left (if jumps) � new ground-level � bounce down � stop x-movement � stop y-movement � reverse y-movement 11 [ The Great Giana Sisters, Rainbow Arts: http://www.youtube.com/watch?v=zrRHAisdIRg ]

  12. Example http:// www.uni-klu.ac.at ● Optimization issues � check only objects in rows and/or columns of relevant x/y-coords � check moving objects only (?) 12 [ The Great Giana Sisters, Rainbow Arts ]]

  13. Convex Polygons http:// www.uni-klu.ac.at ● Collision detection: � bounding box • imprecise � checking every possible pair? • what exactly means “possible”? • complex polygons meshes! � prerequisites: 13

  14. Useful Java Methods http:// www.uni-klu.ac.at ● Interface Shape (objects with geometric shape) � boolean: contains(Point2D p) � boolean: contains(Rectangle2D r) add � Rectangle2D: getBounds2d() subtract � PathIterator: getPathIterator(AffineTransformation t) ● Implementing classes � Area � Polygon � Rectangle intersect exclusiveOr � Line2D � CubicCurve2D, QuadCurve2D � … ● Polygon � addPoint(int x, int y) ● Area � collision detection with intersect � constructor: Area(Shape s) � Rectangle2D: getBounds(Area a) � but: no projection vector! � boolean: isPolgonyal() � void: add(Area a) � void: subtract(Area a) � void: intersect(Area a) � void: exclusiveOr(Area a) 14

  15. Example http:// www.uni-klu.ac.at call: detect(polygon1, polygon2) 15 [ See Code Example: PolygonCollision ]

  16. Separating Axis Theorem http:// www.uni-klu.ac.at ● Intersect-method provides no projection vector � separating axis theorem ● Convex shape: an object is convex if for every pair of points within one object, every point on the connecting straight line is within the object 16

  17. Separating Axis Theorem http:// www.uni-klu.ac.at ● Given two convex shapes, if we can find an axis along which the projection of the two shapes does not overlap, the shapes don’t overlap. [Herman Minkowski, 1864-1909] Collision detection: no separating axis � collision or: 1 separating axis � no collision problem: infinite number of axis to test? 17

  18. Separating Axis Theorem http:// www.uni-klu.ac.at ● For convex polygon meshes: each faces normal is used as an axis to test for separating axis [ projection ] 18

  19. Collision Detection with SAT http:// www.uni-klu.ac.at no collision! collision! [ collision ] 19

  20. Fast Moving Objects http:// www.uni-klu.ac.at position at t2 sweep test position at t1 collision collision??? ● Sweep test ● Multi-sampling � create a new polygon � create additional along the trajectory polygons in between � test collision with the new � test for each of them polygon 20 Tutorials and further examples [http://www.harveycartel.org/metanet/tutorials/tutorialA.html#jakobsen ]

  21. Is this sufficient? http:// www.uni-klu.ac.at 21 R-Type, Irem[ http://www.youtube.com/watch?v=xPv5lqpA4c4&feature=related ]

  22. Multiple Bounding „Boxes“ http:// www.uni-klu.ac.at Big sprite is non-convex, therefor compose it from several convex polygons … Bounding Volumes 22

  23. Collisions on the Pixel-level http:// www.uni-klu.ac.at ● to avoid collision „over- detection“ we need an even more accurate method � first test on polygon-level � then test on pixel-level 23

  24. Collission Response http:// www.uni-klu.ac.at ● Change the object‘s status (e.g. to „exploding) ● Remove one or both objects ● Projection methods � find the smallest possible displacement � direct modification of object positions ● Penalty force methods [ collision.html ] � use spring forces to pull object out of collision � modify the objects acceleration / direction ● Impulse based methods � use changes in velocity to prevent interpenetration (e.g. stop object) 24

  25. Games Framework http:// www.uni-klu.ac.at ● Bug Runner � see also: Java-code 25 Killer Game Programming in Java, Andrew Davison ]

  26. xxx http:// www.uni-klu.ac.at Bug Runner Class Diagram 26

  27. State Chart � State Transition Table http:// www.uni-klu.ac.at Current State Event Action New State Locked Coin Unlock Unlocked Locked Pass Alarm Locked Unlocked Coin Thanks Unlocked Unlocked Pass Lock Locked 27

  28. Transition Table � Java Code http:// www.uni-klu.ac.at 28

  29. http:// www.uni-klu.ac.at Ball Sprite State Diagram 29

  30. http:// www.uni-klu.ac.at Bug (Player) Sprite State Diagram 30

  31. JumpingJack - Bricks http:// www.uni-klu.ac.at ● Brick-images are stored in an image-strip 0 1 2 3 4 � /images/ ● Brick-patterns are stored in text-files � /images/bricksinfo.txt 44444 222222222 111 2222 11111 444 444 22222 444 111 1111112222222 23333 2 33 44444444 00 000111333333000000222222233333 333 2222222223333301 00000000011100000000002220000000003300000111111222222234 31

  32. JumpingJack - Drawing http:// www.uni-klu.ac.at ● Drawing sequence � background • wrap-around ribbons • parallax scrolling) � bricks � sprites 32

  33. JumpingJack – Offset for Bricks http:// www.uni-klu.ac.at 33

  34. „Intelligence“ in Games http:// www.uni-klu.ac.at ● originally „enemy-intelligence“ was stored in fixed patterns, e.g. Pacman: � Blinky – chases the player � Pinky – ambushes (roundabout) � Inky – random movement, starts chasing when close � Clyde – stupid, moves completely randomly [ remark: combination Blinky-Pinky is deadly ] ● usually bosses in „boss-fights“ have fixed movement patterns 34 Pacman [http://www.youtube.com/watch?v=OsLGvm5-29w ]

  35. AI in (non-board) Games http:// www.uni-klu.ac.at ● In the 1990s � pathfinding problems � incomplete information algorithms („fog of war“) ● In the 2000s � machine learning algorithms (e.g. neural networks) � emergent behavior • study and design of complex/multi-agent systems • swarm-intelligence (flocking of birds) � enemies without „cheating“ AI 35 Fog of War – Warcraft II [http://www.youtube.com/watch?v=OsLGvm5-29w ]

  36. Pathfinding with A* http:// www.uni-klu.ac.at ● Given � terrain � starting position � goal position ● Find shortest path � span tree • calculate new position according to possible movement • calculate f = g + h – g … cost from starting position (covered distance) – h … heuristic: estimated distance to goal • span tree from new position • stop – if shortest path found – depth or time limit reached � Move to first position on calculated shortest path ● Admissibility Theorem � h must be less or equal to the real rest-distance! � for our example: h calculated by the manhattan distance 36 Images taken from Pathfinding for Beginners [ http://www.policyalmanac.org/games/aStarTutorial.htm ]

  37. Pathfinding with A* http:// www.uni-klu.ac.at 37

  38. AI-Thread http:// www.uni-klu.ac.at ● Own thread for AI-calculations � PathFinder( GameState state) implements Runnable • run [ implements loop ] – calculate path(s) – store path(s) information in game state – sleep(n), value of n depends on » wanted behavior » CPU utilization ● Attention: � synchronization! 38

Recommend


More recommend