vibration of granular materials
play

Vibration of granular materials D. DUHAMEL UR Navier DES PONTS ET - PDF document

21 November 2007 Vibration of granular materials D. DUHAMEL UR Navier DES PONTS ET CHAUSSEES ECOLE NATIONALE Outline 1. Different behaviors under vibration 2. Discrete element model 3. Long term settlement 4. Continuous model 1. Different


  1. 21 November 2007 Vibration of granular materials D. DUHAMEL UR Navier DES PONTS ET CHAUSSEES ECOLE NATIONALE

  2. Outline 1. Different behaviors under vibration 2. Discrete element model 3. Long term settlement 4. Continuous model

  3. 1. Different behaviors under vibration Problem of settlement of railway tracks Force T 1 cycle T’ Time Settlement ( ≈ 10 -6 mm) Deflexion ( ≈ 1 mm) T’ Displacement Ballast Ballast Layers Layers Platform Platform

  4. Experimental device

  5. Settlement at 320 and 400 km/h Blochet gauche − v réelle =320 km/h Blochet droit − v réelle =400 km/h 4.5 0.3 4 0.25 1 vérin sollicité 3.5 3 vérins sollicités 0.2 3 Tassement (mm) Tassement (mm) 0.15 2.5 1 vérin sollicité 3 vérins sollicités 2 0.1 1.5 0.05 1 0 0.5 0 −0.05 0 0.5 1 1.5 2 0 0.5 1 1.5 2 Nombre de cycles 5 Nombre de cycles 5 x 10 x 10

  6. Threshold of acceleration at 10 m/s² Threshold of speed at 360 km/h

  7. Fully confined Experimental device Partially confined

  8. Fully confined samples

  9. Partially confined samples

  10. Most important parameters

  11. 2. Discrete element model

  12. Equations Contact forces for spherical particules Dynamic equations 2 i d r ∑ = + i i ic m m g F 2 dt c ω 2 i d ∑ = i i ic I R F t 2 dt c Dissipative terms

  13. Load and boundary conditions

  14. Preparation of samples

  15. Influence of different parameters

  16. Comparison with experiments for static loads Steel balls, r = 4.75 mm Steel balls, r = 2.25 mm Glass balls, r = 3.5 mm Grains de ballast, r = 5.88 mm

  17. Density versus number of cycles

  18. partially confined fully confined � The settlement increases with the acceleration � Movement of grains in the partially confined case � Critic acceleration at ~ 1.5g, in the partially confined case

  19. Glass balls Ballast grains Steel balls

  20. 0.25 0.2 0.15 y(m) 0.1 0.05 0 0 0.05 0.1 0.15 x(m)

  21. Coordination pour N=80 Coordination pour N=90 Coordination pour N=70 1.5 1 5 . 5 1 . 5 7 2 5 0.18 1.75 1 . 7 5 . . 3.4 1 3.4 2.5 3.4 1.75 5 2 1 2.25 1.75 5 1.5 . 2 1 5 2 2 0.16 2 1 . 1.5 2 . 1 . 0.18 7 5 2 2 1.75 1.5 1 . 2 5 2.75 2 2 2 2 2 2.5 . 2 2.25 3.2 5 3.2 3.2 2.75 2.5 0.16 1.5 1.75 2 1.75 3 1 2 2.5 . 7 . 2 2 5 1.25 2 0.14 5 0.16 5 5 1.75 2 3 2 3 3 . 1 2 . 1 1.25 1.5 . 2.75 1.75 2 7 2.25 0.14 5 1.75 2.25 2.75 2 1.25 2.25 1.5 2 2 2 . 5 2 2 2 2.25 3 2.5 2 0.14 0.12 3 3 3 2.25 2.8 2.8 1.75 1.75 2.8 1.5 2.5 2 2 2 2 5 1 . 2.5 0.12 2 2 2 1 . . 2 . 5 2 1 . 5 1.75 2.25 2 2.75 5 5 2 2.75 2 . 7 5 2 2.6 1.5 2.6 0.12 2.6 2.25 3 2.75 3 3 0.1 3 3.25 2.25 1.75 2.75 5 2.5 7 2 . 5 2.75 . 2 . 2.75 2 2.5 5 3 2.75 0.1 2 3 2.4 2.4 2.75 2.4 2.5 2.5 2.5 2.75 0.1 2 2 . 3 3 5 2 . 7 5 2.25 . 2.5 0.08 2 2.5 3 2 2 . 7 5 5 2 . 2.75 7 5 . 3 2 . 7 5 3.25 2.2 0.08 7 2.5 3 . 2 5 3 2.2 2 2.2 2.75 . 1 5 3 3 5 . 3 0.08 7 2 2.75 2.75 5 5 3 . 3 5 7 2.75 2.75 3 . 2.75 5 2 2 2 3 3 0.06 2.75 . 5 2 3 . . 2 3 7 2 2.75 2 5 3 5 2 0.06 5 7 2.75 3 2 . 5 3 . 0.06 2 3 2 2 5 . 2.5 2.5 . 5 2 2 2.25 2.5 . 2 2.75 2 2 1.8 2 1.8 2 . 5 1.8 0.04 . 2 7 5 2.75 5 3 5 2 2 . 7 0.04 . 2 2.5 5 2.75 7 2.25 5 . 2 5 . 7 0.04 2 7 3 5 . 2.5 3 3 . 3 3 3 3 2 1.6 3.25 2.75 2.75 3 1.6 3 1.6 3 3.25 3 2.5 3.25 2 2.75 0.02 3 3 2.75 . 3 7 3 0.02 5 2.75 0.02 3.25 . 2.75 2 2.75 2.75 3 . 5 2.5 2 1.4 2 . 2.5 3 1.4 5 1.4 . 2.75 2 3 5 5 3 5 2 . 5 7 2 . 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 Densité pour N=70 Densité pour N=90 Densité pour N=80 0.8 0.8 0.5 0.8 0 0.55 . 6 0.5 0.5 5 0.5 0 . 6 0.55 0.65 0.55 0.6 0.6 0.16 0.65 0.18 0.7 0.7 0.8 0.18 0.7 0.8 0.7 0.7 0.75 0.7 0.75 0.75 0.7 0 0.75 0.55 0.75 0.7 0.6 . 8 0.5 0.55 0.6 0.16 0.5 0.14 0.65 0.65 0.16 0 0.5 0.55 0.6 0.6 0.7 0.75 0.75 . 0 0.65 8 0.8 . 7 0.55 0.6 0.6 0.8 0.8 0.65 0.75 0.6 0.7 0.65 0 0.6 0.65 0.14 0.6 . 0.14 0.12 0.8 0.5 7 6 5 . 0.55 0.8 0 0.65 0.65 0 0.5 . 0.55 8 8 0.6 0.5 8 0.5 0.65 0.7 0.8 . . 0 0.7 0 . 7 0 5 0.12 0.75 0.12 0 . 5 0.6 0.55 0 . 0.6 0.75 0.65 5 0.8 0 . 6 0.5 0.75 0.1 0.8 0.8 0 . 7 0.5 0.7 5 0 . 8 0.75 0.55 7 0.8 0.7 0 0.8 0.4 0.1 . 0.75 . 5 0.4 0 7 0.1 7 0.75 0 . 8 0.4 8 0.08 . 0 . 0 0.65 0.8 0.7 7 0.7 0.8 0.65 0.6 . 0.08 0 0 0.08 0.8 0.3 0.3 0.75 . 0.8 6 0.75 0.8 0.65 5 0.06 0.6 0.3 0.06 0 0.06 0.75 0.2 . 7 0.2 0.7 5 0.04 0.2 0.04 0.7 0.8 0.7 0.75 0.04 8 0.8 . 0 0.1 0 . 0.1 8 0.02 0.02 0.65 0.75 0.1 0.7 0.02 0.8 0 . 5 0.8 8 . 6 0 0 . 7 5 0 75 0.8 0.8 0 0.6 0.7 0 0.75 . 0.75 7 0 5 0.8 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.8 0.75 0.75 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

  22. 3. Computation of long term settlements Definition of residual displacement For a cyclic loading this quantity can be defined by

  23. The parameters of the model are obtained by minimizing the quantity After k cycles of calculation using the molecular dynamic procedure, a linear estimate of the residual displacements is obtained by The logarithmic estimate is obtained by

  24. For linear estimations, the error is given by For logarithmic estimations, the error is given by

  25. The function to minimize is Example: obtained by a DM computation and an extrapolation with (ki = 20, k = 20, and h= 20)

  26. Coordination Examples Positions

  27. Numerical simulation of settlement for cyclic loads

  28. 4. Continuous model of granular media • Unilateral constitutive law in 3D : – Isotropic and homogeneous medium – Small deformation – Stress tensor negative definite ∂ = W σ ≤ σ ε ( ) ij n n 0 ∂ ε i j • Linear continuous piecewise law

  29. Model of ballast with unilateral behavior Example : Pressure on an embankment made of ballast élastique linéaire unilatéral principale min. Contrainte déplacement vertical

  30. Finite element model of a railway track

  31. Vertical acceleration Two layers model • ballast : 30 cm • soil : infinite half-space Force signal by a bogie with two axles

  32. Conclusion � Influence of the shape of the grains – Ball versus polygons – Dynamic versus static behavior � Problem a large number of cyclic loads – Long term procedure � Mechanisms of settlement � Coupling granular with continuous media for structural computations

Recommend


More recommend