critical scaling for the jamming transition of granular
play

Critical scaling for the jamming transition of granular materials - PowerPoint PPT Presentation

Critical scaling for the jamming transition of granular materials M. Otsuki (Aoyama Gakuin Univ.) H. Hayakawa (Kyoto Univ.) Granular materials Sand Saturn ring mustard seed Ginkaku-ji temple Shear stress Shear stress Shear stress Shear


  1. Critical scaling for the jamming transition of granular materials M. Otsuki (Aoyama Gakuin Univ.) H. Hayakawa (Kyoto Univ.)

  2. Granular materials Sand Saturn ring mustard seed Ginkaku-ji temple

  3. Shear stress Shear stress Shear stress Shear stress Shear stress Shear stress Sheared granular materials No flow Homogeneous flow Inhomogeneous flow Gas Dense liquid Amorphous solid ( Φ = 0.12) ( Φ = 0.8) ( Φ = 0.85)

  4. Shear stress Shear stress Shear stress Shear stress Jamming transition Transition point No flow Φ J Homogeneous flow Dense liquid Amorphous solid ( Φ = 0.8) ( Φ = 0.85)

  5. Jamming transition for athermal materials Foam Colloidal suspensions Josephson junction array

  6. δ Model of granular materials Φ < Φ J Φ > Φ J Ft Fn Ft Tangential force Fn • Friction coefficient : μ Normal force • F n = k δ Δ - η v n • F t < μ F n (Coulomb’s friction) Elastic part Dissipative part • Frictionless : μ = 0 • Δ = 1 (Disk) • Frictional : μ > 0 • Δ = 3 / 2 (Sphere)

  7. Critical properties Frictionless case, Δ = 1 Shear modulus Φ < Φ J Φ > Φ J G ~ ( Φ - Φ J ) 1/2 Pressure P Φ J Viscosity η η ~ ( Φ - Φ J ) -3 P ~ ( Φ - Φ J ) Φ J Φ - Φ J

  8. α α, β : Critical exponents Rheological property Frictionless case, Δ = 1 Shear stress σ σ ( γ , Φ ) / | Φ - Φ J | β scaling plot . γ | Φ - Φ J | - α . Shear rate γ Hatano, 2008 . non-linear transport property . σ ( γ , Φ ) = | Φ - Φ J | β S ± ( γ | Φ - Φ J | - α ) For Φ < Φ J , σ ∝ γ 2 (liquid) For Φ > Φ J , σ ≃ const (solid) . For Φ ≃ Φ J , σ ∝ γ y γ

  9. Dynamics (constant shear rate) Φ = 0.80 < Φ J Φ = 0.85 > Φ J

  10. Dynamics (velocity fluctuation) Φ = 0.80 < Φ J Φ = 0.85 > Φ J

  11. Characteristic features Mean field theory Dimension D = 2, 3, 4 with the same exponents obtained from the theory. The critical exponents The critical exponents are depend on the type of the independent of the contact force. dimension. F n = k δ Δ

  12. Effect of Friction σ σ Frictionless ( μ = 0.0) Frictional ( μ = 2.0) Hysteresis loop for frictional case

  13. Effect of friction (pressure) Pressure P Pressure P Δ P Frictionless ( μ = 0.0) Frictional ( μ = 2.0) Continuous transition Discontinuous transition

  14. Effect of friction (type of the transition) 0.005 Δ P 0.004 0.003 0.002 0.001 Δ P 0 0 0.5 1 1.5 2 Continuous transition Discontinuous transition Friction coefficient μ

  15. Phase diagram P ~ ( Φ - Φ S ) Area of the hysteresis loop Φ C Φ S Δ P Φ S Φ C

  16. Summary & Discussion • Jamming transition : Athermal transition from liquid-like states to solid-like states. • Critical exponents depend on the interaction. • Continuous transition for frictionless case, discontinuous transition for frictional case. • Hysteresis loop, many critical densities. • Our result may provide a better understanding of dynamics and non-linear transport properties of dense matters.

Recommend


More recommend