verification and validation of pseudospectral shock
play

Verification and Validation of Pseudospectral Shock Fitted - PowerPoint PPT Presentation

Verification and Validation of Pseudospectral Shock Fitted Simulations of Supersonic Flow over a Blunt Body Gregory P . Brooks Air Force Research Laboratory, WPAFB, Ohio Joseph M. Powers University of Notre Dame, Notre Dame, Indiana 42nd


  1. Verification and Validation of Pseudospectral Shock Fitted Simulations of Supersonic Flow over a Blunt Body Gregory P . Brooks Air Force Research Laboratory, WPAFB, Ohio Joseph M. Powers University of Notre Dame, Notre Dame, Indiana 42nd AIAA Aerospace Sciences Meeting 6 January 2004, Reno, Nevada AIAA-2004-0655 Support: U.S. Air Force Palace Knight Program

  2. Motivation • Develop verified and validated high accuracy flow solver for Euler equations in space and time – verification : solving the equations “right” – validation : solving the right equations • ultimate use for fundamental shock stability questions for inert and reactive flows, detonation shock dynamics, shape optimization

  3. Review: Blunt Body Solutions • Lin and Rubinov, J. Math. Phys. , 1948 • Van Dyke, J. Aero/Space Sci. , 1958 • Evans and Harlow, J. Aero. Sci. , 1958 • Moretti and Abbett, AIAA J. , 1966 • Kopriva, Zang, and Hussaini, AIAA J. , 1991 • Kopriva, CMAME , 1999 • Brooks and Powers, J. Comp. Phys. , 2004 (to appear)

  4. Model: Euler Equations • two-dimensional • axisymmetric • inviscid • calorically perfect ideal gas

  5. Model: Euler Equations � ∂u � ∂ρ ∂t + u∂ρ ∂r + w∂ρ ∂r + ∂w ∂z + u ∂z + ρ = 0 r ∂z + 1 ∂u ∂t + u∂u ∂r + w∂u ∂p ∂r = 0 ρ ∂z + 1 ∂w ∂t + u∂w ∂r + w∂w ∂p ∂z = 0 ρ � ∂u � ∂p ∂t + u∂p ∂r + w∂p ∂r + ∂w ∂z + u ∂z + γp = 0 r

  6. Model: Secondary Equations ω θ = ∂u ∂z − ∂w ∂r � ∂ρ � dt + 1 dω θ dt = ω θ dρ ∂p ∂r − ∂ρ ∂p u + ω θ ρ 2 ρ ∂z ∂r ∂z r � p � 1 p ds T = s = ln dt = 0 ρ, , ρ γ γ − 1 ρ + 1 γ p � u 2 + w 2 � H o = = constant γ − 1 2

  7. Flow Geometry and Boundary Conditions r 1.2 • body: zero mass flux ξ Shock 1 h( ξ , τ ) • shock: RH jump 0.8 • center: homeoentropic 0.6 Body (R=Z b ) v ∞ 0.4 • outflow: supersonic 0.2 η z −0.4 −0.2 0.2 0.4 0.6 0.8 1

  8. Flow Geometry in Transformed Space η Shock 1 • ( r, z, t ) → ( ξ, η, τ ) 0.8 0.6 • unsteady Centerline Outflow 0.4 • shock-fitted to avoid low 0.2 first order accuracy of . . . . 0.2 1 0 0.4 0.6 0.8 ξ Body shock capturing

  9. Outline: Pseudospectral Solution Procedure • Define collocation points in computational space. • Approximate all continuous functions and their spatial derivatives with Lagrange interpolating polynomials, which have global support for high spatial accuracy . spatial discretization algebra • PDEs − − − − − − − − − − − − → DAEs − − − − → ODEs. • Cast ODEs as d x dt = q ( x ) . • Solve ODEs using high accuracy solver LSODA.

  10. Taylor-Maccoll: Flow over a Sharp-Nose Cone • Similarity solution r available for flow over ξ 1.2 a sharp cone 1 M ∞ • Non-trivial post-shock 0.8 Shock Body 0.6 flow field η 0.4 • Ideal verification 0.2 r o z benchmark 0.2 0.4 0.6 0.8 1 −0.4 −0.2

  11. Verification: Taylor-Maccoll Time-Relaxation 0 10 • M ∞ = 3 . 5 L ∞ [ Ω ] residual in ρ −5 10 • 5 × 17 grid • t → ∞ , error → 10 − 12 −10 10 steady state error −15 10 2 4 6 8 10 τ

  12. Verification: Taylor-Maccoll Spatial Resolution • spectral convergence 0 10 • roundoff error realized −5 L ∞ [ Ω ] error in ρ 10 at coarse resolution, 5 × 17 −10 10 • run time ∼ 10 2 s ; −15 10 0 1 2 3 10 10 10 10 800 MHz machine η number of nodes in direction

  13. Blunt Body Flow: Mach Number Field 1.5 √ • R = Z 1 . 8 1.8 6 1 1 . • M ∞ = 3 . 5 6 1 . 4 . 1 r 4 1 . • 17 × 9 grid 1.2 0.5 1 • transonic flow field 8 . 0 0.6 predicted 0.4 2 . 0 0 −0.2 0 0.2 0.4 0.6 0.8 • qualitatively correct z • not a verification

  14. Blunt Body Flow: Pressure Field 1.5 • high pressure at nose 5.5 • qualitatively correct 1 6.5 • not a verification 5 r . 7 8.5 0.5 1 0 1 1 . 5 13.5 15 6 1 0 −0.2 0 0.2 0.4 0.6 0.8 z

  15. Blunt Body Flow: Vorticity Field 1.5 • Helmholtz Theorem: -1 dρ dt , ∇ p × ∇ ρ , shock -1.5 1 -2 curvature, flow r divergence induce dω θ -3 dt -4 0.5 • intuition difficult -3 • not a verification -2 -1 0 -0.2 0 0.2 0.4 0.6 0.8 1 z

  16. Verification: Blunt Body Pressure Coefficient • C p = 2 p ( ξ, 0 ,τ ) − 1 γM 2 ∞ • Newtonian theory gives 1.8 prediction in high Mach Pseudospectral prediction Modified Newtonian theory 1.6 number limit 1.4 1.2 C p 1 • comparison quantitatively 0.8 0.6 excellent 0.4 0.2 • not global 0 0.2 0.4 0.6 0.8 1 r

  17. Verification: Blunt Body Entropy Field 1.5 • ds dt = ∂s ∂t + ∇ · v = 0 0.3 • if stable, ∂s ∂t → 0 as 1 0.4 t → ∞ r 0.5 • thus, v · ∇ s → 0 0.5 • quantitative difference 0.6 approaches roundoff 0 -0.2 0 0.2 0.4 0.6 0.8 1 z error

  18. Proof: Total Enthalpy is Constant � u 2 + w 2 � γ p ρ + 1 • H o ≡ (definition) γ − 1 2 dt = ρT ds + ∂p • ρ dH o (from Euler equations) dt ∂t ���� ���� → 0 =0 • H o = constant on streamline as t → ∞ • RH shock jump equations admit no change in H o • If H o is spatially homogeneous before the shock, it will remain so after the shock; H o = constant . QED.

  19. Verification: Blunt Body Total Enthalpy • H o : a true constant −5 x 10 1.5 0.5 • deviation from freestream 0 value measures error 1 −0.5 • 17 × 9 , error ∼ 10 − 5 −1 r −1.5 0.5 • 29 × 15 , error ∼ 10 − 9 −2 • good quantitative −2.5 0 0 0.5 1 z verification

  20. Verification: Blunt Body Grid Convergence • “exact solution” from 65 × 33 grid L ∞ [ Ω ] error in ρ −5 10 • spectral convergence −10 10 • error → 10 − 12 1 2 3 10 10 10 • best quantitative number of nodes verification

  21. Validation: Flow over a Sphere 1.4 • Shock shape 1.2 predictions match 1 0.8 Billig’s ( JSR , r 0.6 1967) 0.4 Body surface Pseudospectral prediction • Error ∼ 10 − 2 0.2 Billig 0 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 z

  22. Unsteady Problem: Acoustic Wave/Shock Interaction • low -frequency freestream input 0 10 disturbance ∆ ρ ∞ | z=−1 ∆ ρ ∞ −2 10 ∆ h • low-amplitude, −4 10 P(f k ) −6 10 high-frequency −8 10 response captured by −10 10 high accuracy method −12 10 0 20 40 60 80 100 reduced frequency (f k ) • 33 × 17 grid; run time, 7 . 5 hrs.

  23. Conclusions • Pseudospectral method coupled with shock fitting gives solutions with high accuracy and spectral convergence rates in space for Euler equations. • Standardized formulation of d x dt = q ( x ) allows use of integration methods with high accuracy in time. • Algorithm has been verified to 10 − 12 . • Predictions have been validated to 10 − 2 . • Discrepancy between prediction and experiment is not attributable to truncation error.

  24. • Challenge to determine which factor ( e.g. neglected physical mechanisms, inaccurate constitutive data, measurement error, etc. ) best explains the remaining discrepancy between prediction and observation. • Challenge also to exploit verification and validation for first order shock capturing methods, necessary for complex geometries.

Recommend


More recommend