vectorial boolean functions with very low differential
play

Vectorial Boolean Functions with very Low Differential-linear - PowerPoint PPT Presentation

Vectorial Boolean Functions with very Low Differential-linear Uniformity using MaioranaMcFarland type Construction Deng Tang 1 , 2 , Bimal Mandal 3 , Subhamoy Maitra 4 1 School of Mathematics, Southwest Jiaotong University, Chengdu, China 2


  1. Vectorial Boolean Functions with very Low Differential-linear Uniformity using Maiorana–McFarland type Construction Deng Tang 1 , 2 , Bimal Mandal 3 , Subhamoy Maitra 4 1 School of Mathematics, Southwest Jiaotong University, Chengdu, China 2 State Key Laboratory of Cryptology, Beijing, 100878, China 3 CARAMBA, INRIA, Nancy–Grand Est., France 4 Indian Statistical Institute, Kolkata, India Indocrypt 2019

  2. Outlines ◮ Introduction • DLCT • Existing results ◮ New properties of the DLCT ◮ Differential-linear uniformity of known balanced ( n, m ) -function • Modified inverse functions • Modified Maiorana–McFarland bent functions ◮ Construction of a new class of balanced ( n, m ) -function ◮ Balanced (4 t, t − 1) -function with very low differential-linear uniformity ◮ Implementation ◮ Conclusions 1 / 24

  3. Introduction: DLCT and Existing results I 2 = { x = ( x 1 , x 2 , . . . , x n ) : x i ∈ F 2 , 1 ≤ i ≤ n } ∼ ◮ F n = F 2 n 2 : wt( x ) = � n ◮ Hamming weight of x ∈ F n i=1 x i ◮ Vectorial Boolean function or ( n, m ) -function: S : F n → F m 2 − 2 ◮ Boolean function in n variables: s : F n 2 − → F 2 ◮ Support of s : supp(s) = { x ∈ F n 2 : s( x ) = 1 } ◮ S ( x ) = ( s 1 ( x ) , s 2 ( x ) , . . . , s m ( x )) . • s i , 1 ≤ i ≤ m : Coordinate function of S • λ · S, λ ∈ F m ∗ 2 : Component function of S ◮ Autocorrelation of a component function λ · S of S at α ∈ F n 2 : � ( − 1) λ · ( S ( x ) ⊕ S ( x ⊕ α )) . C λ · S ( α ) = x ∈ F n 2 2 / 24

  4. Introduction: DLCT and Existing results II ◮ Walsh–Hadamard transform of an ( n, m ) -function S at ( α, λ ) : � ( − 1) λ · S ( x ) ⊕ α · x . W λ · S ( α ) = x ∈ F n 2 ◮ Nonlinearity of an ( n, m ) -function S : 2 n − 1 − 1 nl ( S ) = max | W λ · S ( α ) | . 2 ( α,λ ) ∈ F n 2 × F m ∗ 2 ◮ Differential uniformity of an ( n, m ) -function S : # { x ∈ F n δ ( S ) = max 2 : S ( x ) ⊕ S ( x ⊕ α ) = β } . α ∈ F n ∗ 2 , β ∈ F m 2 ◮ Differential distribution table (DDT) of ( n, m ) -function S : DDT S ( α, β ) = # { x ∈ F n 2 : S( x ) ⊕ S( x ⊕ α ) = β } . 3 / 24

  5. Introduction: DLCT and Existing results III ◮ Langford and Hellman at CRYPTO’94 first introduced the differential-linear cryptanalysis. ◮ Bar-On et al. at EUROCRYPT’19 proposed the differential linear connectivity table (DLCT). ◮ DLCT of an ( n, m ) -function S : DLCT S ( α, λ ) = # { x ∈ F n 2 : λ · S( x ) = λ · S( x ⊕ α ) } − 2 n − 1 . • DLCT S ( α, λ ) = 2 n − 1 , if α = 0 or λ = 0 . • DLCT S ( α, λ ) = 1 2 ( − 1) v · λ DDT S ( α, v ) . � v ∈ F m 2 ◮ Differential-linear uniformity of S : DL(S) = max | DLCT S ( α, λ ) | . ( α,λ ) ∈ F n ∗ 2 × F m ∗ 2 4 / 24

  6. Introduction: DLCT and Existing results IV ◮ Li et al. [arXiv:1907.05986, 2019] investigated the properties of DLCT and differential-linear uniformity of some class of ( n, m ) -function. ◮ Canteaut et al. [ia.cr/2019/848, 2019] derived similar results on DLCT independently. ◮ They proved that DLCT S ( α, λ ) = 1 2 C λ · S ( α ) , and so, � � 1 � � DL(S) = max � C λ · S ( α ) � . � � 2 ( α,λ ) ∈ F n ∗ 2 × F m ∗ 2 ◮ Maiorana-McFarland bent functions in 2 k variables (JCTA 1973): h ( x , y ) = φ ( x ) · y ⊕ p ( x ) 5 / 24

  7. Introduction: DLCT and Existing results V ◮ h can be written as h = h 0 || h 1 || . . . || h 2 k − 1 , where h i ( y ) = h ( x i , y ) , for all y ∈ F k 2 . ◮ In FSE’94, Dobbertin first constructed a balanced Boolean function with high nonlinearity. � φ ( x ) · y , if x � = 0 s ( x , y ) = g ( y ) , if x = 0 ◮ Tang et al. (IEEE-TIT 2018), Kavut et al. (DCC 2019) and Tang et al. (SIDMA 2019) also constructed the balanced Boolean functions. ◮ Let n = 2 k be an even integer greater than 4 .  if ( x , y ) ∈ { 0 } × F k u ( y ) , 2  if ( x , y ) ∈ F k ∗ 2 × F k ∗ f ( x , y ) = φ ( x ) · y , 2 if ( x , y ) ∈ F k ∗ v ( x ) , 2 × { 0 }  6 / 24

  8. New properties of the DLCT I ◮ E 0 a = { x ∈ F n 2 : a · x = 0 } , a ∈ F n 2 . ◮ Im ( D α S ) = { y ∈ F m 2 : y = S ( x ) ⊕ S ( x ⊕ α ) , x ∈ F n 2 } . ◮ DLCT S ( α, λ ) = # { x ∈ F n 2 : λ · S( x ) = λ · S( x ⊕ α ) } − 2 n − 1 . Proposition 1 For any ( n, m ) -function S , α ∈ F n 2 and λ ∈ F m 2 , � DDT S ( α, δ ) − 2 n − 1 . DLCT S ( α, λ ) = δ ∈ E 0 λ Corollary 1 Let S be an ( n, m ) -function. For any α ∈ F n ∗ and λ ∈ F m ∗ 2 , 2 DLCT S ( α, λ ) = 2 n − 1 if and only if Im ( D α S ) ⊂ E 0 λ . Moreover, DLCT S ( α, λ ) = − 2 n − 1 if and only if Im ( D α S ) ⊂ F m 2 \ E 0 λ . 7 / 24

  9. New properties of the DLCT II Corollary 2 Let S be an APN permutation over F n 2 . For any α, λ ∈ F n ∗ 2 , DLCT S ( α, λ ) ≤ 2 n − 1 − 2 . Moreover, DLCT S ( α, λ ) + 2 n − 1 = 0 if and only if Im ( D α S ) = F n 2 \ E 0 λ . Open problem 1 (Li et al., arXiv:1907.05986) For an odd integer n , are there ( n, n ) -function S other than the n − 1 2 ? Kasami–Welch APN functions that have DL(S) = 2 8 / 24

  10. New properties of the DLCT III Theorem 1 Let n be an odd integer. For an APN ( n, n ) -function S , n − 1 if and only if for any α, λ ∈ F n ∗ DL(S) = 2 2 2 2 n − 2 − 2 n − 1 2 − 1 ≤ # E 0 λ ∩ Im ( D α S ) ≤ 2 n − 2 + 2 n − 1 2 − 1 . 9 / 24

  11. Differential-linear uniformity of known balanced ( n, m ) -function I ◮ Qu et al. (IEEE-TIT 2013): I 1 ( x ) = x 2 n − 2 ⊕ f ( x ) , where f are well-choose Boolean functions such that f ( x 2 n − 2 ) ⊕ f ( x 2 n − 2 ⊕ 1) = 0 . ◮ Tang et al. (DCC 2015): I 2 ( x ) = ( x ⊕ g ( x )) 2 n − 2 , where g are well-choose Boolean functions such that g ( x ) ⊕ g ( x ⊕ 1) = 0 . Theorem 2 For any I 1 and I 2 , we have • DL( I 1 ) ≥ 2 n/ 2 − 2 and � 2 t � 1 − � ⌊ n/ 2 ⌋ • DL( I 2 ) ≥ 1 t =0 ( − 1) n − t n � n − t � . 2 n − t t 10 / 24

  12. Differential-linear uniformity of known balanced ( n, m ) -function II ◮ Let n = 2 k and � φ ( x ) · y , if x � = 0 s ( x , y ) = g ( y ) , if x = 0 Lemma 1 Let s be an n = 2 k -variable Boolean function defined as above, then for any ( a , b ) ∈ F k 2 × F k 2 we have 2 n  if a = b = 0  − 2 k + C g ( b ) , if a = 0 , b ∈ F k ∗ C s ( a , b ) = . 2 2( − 1) φ ( a ) · b W g ( φ ( a )) , if a ∈ F k ∗ 2 , b ∈ F k  2 11 / 24

  13. Differential-linear uniformity of known balanced ( n, m ) -function III Theorem 3 Let s be an n = 2 k -variable Boolean function defined as above and there exists b ∈ F k ∗ such that C g ( b ) = 0 . If s is a component 2 function of an ( n, m ) -function S , then we have DL(S) ≥ 2 k − 1 . 12 / 24

  14. Construction of a new class of balanced ( n, m ) -function I Construction 1 Let n = 2 k ≥ 4 be an even integer. We construct an ( n, m ) -func- tion S whose coordinate functions s i ’s (1 ≤ i ≤ m ) are defined as follows:  if ( x , y ) ∈ { 0 } × F k u i ( y ) , 2  if ( x , y ) ∈ F k ∗ 2 × F k ∗ s i ( x , y ) = φ i ( x ) · y , , 2 if ( x , y ) ∈ F k ∗ v i ( x ) , 2 × { 0 }  where x , y ∈ F k 2 , and 1. φ i ’s are mappings over F k 2 such that l 1 φ 1 ⊕ l 2 φ 2 ⊕ · · · ⊕ l m φ m is a permutation and l 1 φ 1 ( 0 ) ⊕ l 2 φ 2 ( 0 ) ⊕ · · · ⊕ l m φ m ( 0 ) = 0 , 2. u i ’s and v i ’s are Boolean functions over F k 2 such that i =1 l i v i ) = 2 k − 1 and ⊕ m wt( ⊕ m i =1 l i u i ) ⊕ wt( ⊕ m i =1 l i u i ( 0 ) = ⊕ m i =1 l i v i ( 0 ) = 0 . 13 / 24

  15. Construction of a new class of balanced ( n, m ) -function II Theorem 4 For any n = 2 k ≥ 4 , every ( n, m ) -function S generated by Construction 1 is balanced. Theorem 5 Let n = 2 k ≥ 4 and S be an ( n, m ) -function generated by Construction 1. For any l = ( l 1 , l 2 , · · · , l m ) ∈ F m ∗ 2 , we have  0 , if ( a , b ) = ( 0 , 0 )  if ( a , b ) ∈ { 0 } × F k ∗  W l · U ( b ) + W l · V ( 0 ) ,  2 W l · S ( a , b ) = , if ( a , b ) ∈ F k ∗ W l · U ( 0 ) + W l · V ( a ) , 2 × { 0 }   ( − 1) ( l · Φ) − 1 ( b ) · a 2 k + W l · U ( b ) + W l · V ( a ) , if ( a , b ) ∈ F k ∗ 2 × F k ∗  2 where U = ( u 1 , . . . , u m ) , V = ( v 1 , . . . , v m ) and Φ = ( φ 1 , . . . , φ m ) . 14 / 24

  16. Construction of a new class of balanced ( n, m ) -function III Theorem 6 Let the notation be the same as in Theorem 5. Let n = 2 k ≥ 4 and S be an ( n, m ) -function generated by Construction 1. For any l = ( l 1 , l 2 , · · · , l m ) ∈ F m ∗ 2 , we have  2 n , if ( a , b ) = ( 0 , 0 )  C l · U ( b ) + 2W (l · V) ′ ( b ) − 2 k , if ( a , b ) ∈ { 0 } × F k ∗   2 C l · S ( a , b ) = , C l · V ( a ) + 2W l · U ((l · Φ)( a )) − 2 k , if ( a , b ) ∈ F k ∗ 2 × { 0 }   2( − 1) ( l · Φ)( a ) · b W l · U � � if ( a , b ) ∈ F k ∗ 2 × F k ∗  ( l · Φ)( a ) + W ( l · V ) ′′ ( b ) + 8 t, 2 ( l · Φ) − 1 ( x ) where ( l · V ) ′ ( x ) = ( l · V ) � � , ( l · V ) ′′ ( x ) = ( l · Φ) − 1 ( x ) ⊕ a � � ( l · V ) , and t equals 1 if l · V ( a ) = l · U ( b ) = 1 and equals 0 otherwise. 15 / 24

Recommend


More recommend