varying nf in qcd scale separation topology and hot axions
play

Varying Nf in QCD: scale separation, topology (and hot axions) - PowerPoint PPT Presentation

Varying Nf in QCD: scale separation, topology (and hot axions) Maria Paola Lombardo INFN I. Zero temperature: String tension, Critical temperature, Wilson flow MpL, K. Miura, T. J. Nunes da Silva and E. Pallante, Int. J. Mod. Phys. A 29 , no.


  1. Varying Nf in QCD: scale separation, topology (and hot axions) Maria Paola Lombardo INFN

  2. I. Zero temperature: String tension, Critical temperature, Wilson flow MpL, K. Miura, T. J. Nunes da Silva and E. Pallante, Int. J. Mod. Phys. A 29 , no. 25, 1445007 (2014), + work in progress II. High temperature: Topological susceptibility A. Trunin, F. Burger, E. M. Ilgenfritz, MpL and M. M¨ uller-Preussker, J. Phys. Conf. Ser. 668 , no. 1, 012123 (2016), J. Phys. Conf. Ser. 668 , no. 1, 012092 (2016), + work in progress

  3. I. Zero temperature: String tension, Critical temperature, Wilson flow

  4. Y es

  5. Next

  6. Standard From UV to IR picture of scale separation Λ UV In the conformal phase IR scales vanish but UV ones Λ IR survive Nfc The coupling walks for 11 x = N f /N c

  7. Standard From UV to IR picture of scale separation Λ UV Scale separation Λ IR Nfc 12

  8. (Essential) singularity in the chiral limit and mass ratios: example from holographic V-QCD Not Unique Arean, Iatrakis, Jarvinen, Kiritsis 2013

  9. not unique: Power-law corrections to essential singularity Gies et al. 2013 Alho, Evans, Tuominen 2013 Power-law X Miranski scaling Quasi-Goldstone nature of the scalar

  10. Mass deformed theory: EoS approach for IR quantities y = f ( x ) y = m/ < ¯ δ = 6 − η ψψ > δ 2 − η Second order transition: 1 c − N f ) / < ¯ < ¯ c − N f ) β x = ( N f ψψ > ψψ > = ( N f β Nogawa, Hasegawa, Nemoto, 2012 Essential singularity: √ √ ( N f c − N f ) / < ¯ < ¯ ( N f c − N f ) x = e ψψ > ψψ > = e c imply Continuity of f ( x ) plus asymptotic forms for m → 0 and N f → N f √ ( N f c − N f ) for m smallish and ( N f < ¯ c − N f ) largish ψψ > ∝ e ψψ > ∝ m 1 / δ for m largish and ( N f < ¯ c − N f ) smallish A nomalous dimension appears naturally below Nfc Scaling limited by Goldstone singularities in the chiral limit (Wallace Zia)

  11. These features are seen in model calculations: Alho, Evans, Tuominen 2013 Mass deformed theory With mass With mass Analogous to KMI, LSD

  12. Mass deformed theory II: KMI discussion Mutatis mutandis, Eos approach reproduces KMI scenario: Scaling with anomalous dimension KMI 2013

  13. Approaching conformality from below and above IR IR IR….. Essential sing. Conformal scaling (X power-law) Analogies Differences in the broken phase in the symmetric phase EoS IR 2nd order transition Griffith’s analyticity

  14. Observables: Critical temperature Preliminary W0, W1, … induced by Wilson flow Preliminary String tension Technical lattice scale defined at one lattice spacing Λ LAT Strategy: consider dimensionless ratios R = O1/O2 When O2 is UV this is the facto a conventional scale setting Observation: R relatively stable wrt mass variations

  15. Results

  16. From an IR to a UV scale: T c decreases KM, MpL, EP 2012

  17. Asymptotic scaling of Tc gives T c / Λ More difficult to reach for Nf=8

  18. Towards a quantitive comparison with holography

  19. Nf = 6, Wilson Flow Nf = 8, Wilson Flow

  20. Scale from Wilson flow Nf=6 0.6 Beta = 5.025, Wilson Beta = 5.025, Symanzik Beta = 5.2, Wilson Beta = 5.2, Symanzik 0.5 0.4 t d/dt t 2 E 0.3 0.2 Preliminary 0.1 0 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 w0Tc

  21. T c on the 1/w0 scale Preliminary

  22. Moving the scale with Wilson flow Qualitatively as expected, limited by lattice artifacts 0.45 Nf = 6 0.21 Nf = 8 0.4 T c W r ( N f =6) − T c W r ( N f =8) 0.2 0.35 T c W r ( N f =6) (Tcw0(Nf=6) - Tcw0(Nf=8))/Tcw0(Nf=6) 0.19 0.3 0.18 0.25 t d/dt t 2 E 0.2 0.17 0.15 0.16 0.1 0.15 0.05 0.14 0 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 Reference value w0Tc UV

  23. T c and the string tension Mild decrease, possibly constant as N f → N c f Preliminary Again similar to the prediction of the WSS model: T c √ σ ∝ (1 − ✏ N f /N c ) communicated by F. Bigazzi

  24. Scale separation in the preconformal region of QCD Preliminary

  25. Results by LSD

  26. Scale separation ++ 0

  27. Scale separation Puzzle? Role of UA(1) ++ symmetry ? It’s 0 important at finite T ..

  28. S c a l e d s i f e f p e a r e r a n t t i o f n r o : m Q C D Ok

  29. II. High temperature: Topological susceptibility

  30. T Tc sQGP Nf

  31. Axion freezout : 3H(T) = m a (T) Berkowitz Buchoff Rinaldi 2015 Yang Mills Freezout Axion density at freezout controls axion density today

  32. Axions ‘must’ be there: solution to the strong CP problem Ammitted but Postulate axions, coupled to Q:

  33. How many flavors?

  34. In the region of interest T > 500 MeV 1) We need 2+1+1 2) 2+1+1 = 4 (approximatively) We can place the region of interest in the Nf, T diagram

  35. TMFT, prel. Sanity check + confirms dynamical charm does not affect the critical region

  36. Shape of distributions of topological charge: different flow time = (0.1,0.15,0.2,0.3,0.4,0.45,0.66) Beta = 2.1 Beta = 2.1 0.07 0.7 ’gWF-b2.10nt20.tout2’ using 1:3 ’gWF-b2.10nt20.tout3’ using 1:3 ’gWF-b2.10nt20.tout4’ using 1:3 0.06 ’gWF-b2.10nt20.tout5’ using 1:3 0.6 ’gWF-b2.10nt20.tout1’ using 1:3 Cold Hot ’gWF-b2.10nt20.tout6’ using 1:3 0.05 0.5 0.04 0.4 0.03 0.3 0.02 0.2 0.01 0.1 0 0 -20 -15 -10 -5 0 5 10 15 20 -4 -3 -2 -1 0 1 2 3 4 Q Q

  37. TMFT Decrease with T much slower than DIGA Bonati, D’Elia, Mariti, Martinelli,Mesiti,Negro,Sanfilippo, Villadoro arXiv:1512.0674

  38. Continuum limit , 0.6 for different scales 220 200 < T < 210 400 < T < 430 150 < T < 153 160 < T < 165 200 240 < T < 250 340 < T < 350 180 160 Chi**0.25 140 120 100 80 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 a 2

  39. A preliminary continuum extrapolation shows an even milder decrease wrt to Nf = 2+1 strong sensitivity to Nf χ ( T ) 1 / 4 ..to be continued T

  40. Summary We have studied the evolution of different dimensionless observables with Nf, for a fixed quark mass. An external mass enables communication between different phases, which are no longer qualitatively different. The dynamics retain features of the precritical behavior, in accordance with an EoS analysis:we have observed scale separation which indirectly supports walking of the coupling. The theory with eight flavors is qualitatively different from QCD. Topological susceptibility at high T, which is relevant for axion physics, seems to be particularly sensitive to the number of fermions.

Recommend


More recommend