variant and invariant states for reaction systems
play

Variant and Invariant States for Reaction Systems S. Srinivasan, J. - PowerPoint PPT Presentation

Variant and Invariant States for Reaction Systems S. Srinivasan, J. Billeter and D. Bonvin Laboratoire dAutomatique EPFL, Lausanne, Switzerland TFMST 2013, Lyon Laboratoire dAutomatique EPFL Variant and Invariant States 1 / 13


  1. Variant and Invariant States for Reaction Systems S. Srinivasan, J. Billeter and D. Bonvin Laboratoire d’Automatique EPFL, Lausanne, Switzerland TFMST 2013, Lyon Laboratoire d’Automatique – EPFL Variant and Invariant States 1 / 13

  2. Outline Concept of Variants and Invariants Concept of Vessel Extents Each extent linked to the corresponding rate process Presence of outlet(s) → vessel extents Vessel extents of reaction, mass transfer, heat transfer Applications Model reduction Static state reconstruction Incremental kinetic identification Conclusions Laboratoire d’Automatique – EPFL Variant and Invariant States 2 / 13

  3. Homogeneous reaction systems Balance equations Homogeneous reaction system consisting of S species, R independent reactions, p inlet streams, and 1 outlet stream W in , u in Mole balances for S species n ( t ) = N T r v ( t ) + W in u in ( t ) − ω ( t ) n ( t ) , ˙ n (0) = n 0 ( S ) ( S × R ) ( R ) ( S × p ) ( p ) N n r v r v ( t ) = V ( t ) r ( t ) considered as endogenous signal ω ( t ) = u out ( t ) m ( t ) n , u out Global macroscopic view Generally valid regardless of temperature, catalyst, solvent, etc. Laboratoire d’Automatique – EPFL Variant and Invariant States 3 / 13

  4. Reaction variants and reaction invariants in the literature 1 Linear transformation using N : � y r ( t ) � � N T + � = n ( t ) with N P = 0 R × ( S − R ) y iv ( t ) P T Reaction variants y r and reaction invariants y iv describe the reactor state: T + W in u in ( t ) − ω ( t ) y r ( t ) y r ( t ) = r v ( t ) + N ˙ y r (0) = N T + n 0 T W in u in ( t ) − ω ( t ) y iv ( t ) y iv ( t ) = P ˙ y iv (0) = P T n 0 y r are reaction and flow variants y iv are reaction invariants but flow variants y r are pure reaction variants and y iv are true invariants only for batch reactors (with u in = 0 , ω = 0) Can we compute pure reaction variants and true invariants for open reactors? 1Asbjornsen et al. (1970), Chem. Eng. Sci. , 25:1627-1639. Laboratoire d’Automatique – EPFL Variant and Invariant States 4 / 13

  5. Vessel extents and true invariants Assumption: rank ([ N T W in n 0 ]) = R + p + 1. Linear transformation: 2 3 2 3 x r ( t ) R x in ( t ) F 6 7 6 7 x ( t ) := 5 = 5 n ( t ) = T n ( t ) 6 7 6 7 c T x ic ( t ) 4 4 x iv ( t ) Q Vessel extents of reaction x r and flow x in , discounting factor x ic , and invariants x iv : T x r ( t ) = RN ˙ r v ( t ) + RW in u in ( t ) − ω ( t ) x r ( t ) x r (0) = 0 R | {z } | {z } I R 0 ˙ T x in ( t ) = FN r v ( t ) + FW in u in ( t ) − ω ( t ) x in ( t ) x in (0) = 0 p |{z} | {z } 0 I p T N T T W in x ic ( t ) = c ˙ r v ( t ) + c u in ( t ) − ω ( t ) x ic ( t ) x ic (0) = 1 | {z } | {z } 0 0 T x iv ( t ) = QN ˙ r v ( t ) + QW in u in ( t ) − ω ( t ) x iv ( t ) x iv (0) = 0 q | {z } | {z } 0 0 q = S − R − p − 1 Laboratoire d’Automatique – EPFL Variant and Invariant States 5 / 13

  6. Four subspaces N T W in n 0 P � − 1 � x ( t ) = T n ( t ) T = PQ n 0 c T P orthogonal to N T , W in and n 0 effet of outlet invariant subspace on IC subspace 1 q x r , i ( t ) = r v , i ( t ) − ω ( t ) x r , i ( t ) ˙ x r , i (0) = 0 N T R W in F x in , j ( t ) = u in , j ( t ) − ω ( t ) x in , j ( t ) ˙ x in , j (0) = 0 reaction inlet subspace subspace x ic ( t ) = − ω ( t ) x ic ( t ) ˙ x ic (0) = 1 p R x iv = P T n ( t ) = 0 q amount that is still in the reactor S-dimensional space, R + p + 1 variants n ( t ) = N T x r ( t ) + W in x in ( t ) + n 0 x ic ( t ) 1 Bhatt et al. (2010), I&EC Research , 49:7704-7717 Laboratoire d’Automatique – EPFL Variant and Invariant States 6 / 13

  7. Homogeneous CSTR – Experimental data Ethanolysis reaction with seven species ( S = 7), three reactions ( R = 3), two inlets ( p = 2) and one outlet Stoichiometric matrix ( N ) and inlet-composition matrix ( W in ): h w in , A h − 1 − 1 i i T 1 1 0 0 0 0 0 0 0 0 0 N = W in = 0 − 1 − 1 1 1 0 0 0 w in , B 0 0 0 0 0 0 − 1 0 − 1 0 1 1 Measured numbers of moles w in , B , u in , B w in , A , u in , A 0.5 A 0.45 B C 0.4 D E 0.35 F n ( t ) [kmol] G 0.3 0.25 A,B,C, 0.2 D,E,F, N G 0.15 0.1 0.05 0 0 5 10 15 20 25 30 35 40 45 50 Time [h] n , u out Reaction extents ? Laboratoire d’Automatique – EPFL Variant and Invariant States 7 / 13

  8. Homogeneous CSTR – Computation of extents Extents of reaction 0.35 x r , 3 0.3 x r [kmol] x r , 1 0.25 0.2 x r , 2 0.15 0.1 0.05 Numbers of moles 0 0 5 10 15 20 25 30 35 40 45 50 Time [h] 0.5 A B Extents of inlet 0.45 C 0.4 D 70 N W in n 0 E 0.35 x in , 1 60 F n [kmol] G 0.3 x in , 2 50 2 3 R 0.25 x in [kg] 40 F 0.2 6 7 30 T = 6 7 0.15 c T 20 4 5 0.1 Q 10 0.05 0 0 5 10 15 20 25 30 35 40 45 50 Time [h] 0 0 5 10 15 20 25 30 35 40 45 50 Time [h] Effect of outlet on IC 1 0.9 0.8 0.7 0.6 x ic 0.5 0.4 0.3 0.2 0.1 1 Bhatt et al. (2010), I&EC Research , 49:7704-7717 0 0 5 10 15 20 25 30 35 40 45 50 Time [h] Laboratoire d’Automatique – EPFL Variant and Invariant States 8 / 13

  9. Extension to fluid-fluid reaction systems For one of the phases x r ( t ) = r v ( t ) − ω ( t ) x r ( t ) ˙ x r (0) = 0 R P Q n 0 c T invariant subspace effet of outlet x m ( t ) = ζ ( t ) − ω ( t ) x m ( t ) ˙ x m (0) = 0 p m on IC subspace q 1 W m M ˙ x in ( t ) = u in ( t ) − ω ( t ) x in ( t ) x in (0) = 0 p mass-transfer N T R subspace x ic ( t ) = − ω ( t ) x ic ( t ) ˙ x ic (0) = 1 p m reaction subspace W in F x iv = P T n ( t ) = 0 q R inlet subspace p n ( t ) = N T x r ( t ) + W m x m ( t ) + W in x in ( t ) + n 0 x ic ( t ) S -dimensional space R + p m + p + 1 variants 1 Bhatt et al. (2010), I&EC Research , 49:7704-7717 Laboratoire d’Automatique – EPFL Variant and Invariant States 9 / 13

  10. Extension to reaction systems with heat balance equation � � n ( t ) x ( t ) := T dimension S + 1 m ( t ) c p T ( t ) “Decoupled” system x r ( t ) = r v ( t ) − ω ( t ) x r ( t ) ˙ x r (0) = 0 R x ex ( t ) = q ex ( t ) − ω ( t ) x ex ( t ) ˙ x ex (0) = 0 x in ( t ) = u in ( t ) − ω ( t ) x in ( t ) ˙ x in (0) = 0 p x ic ( t ) = − ω ( t ) x ic ( t ) ˙ x ic (0) = 1 x iv = 0 q Application: estimation of q ex ( t ) or identification of heat-transfer coefficients independently of any kinetic information Laboratoire d’Automatique – EPFL Variant and Invariant States 10 / 13

  11. Model reduction Dimensionality d := R + p + 1, min( S , d ) differential equations However, transformation assumes knowledge of n 0 , i.e., S initial conditions Elimination of fast modes via singular perturbation The reactions (and not the associated numbers of moles) exhibit fast or slow dynamic behavior → transformed decoupled model is well suited for input estimation: x r , i ( t ) = r v , i ( t ) − ω ( t ) x r , i ( t ) ˙ x r , i (0) = 0 x r , i ( t ) r v , i ( t ) Dynamical system Laboratoire d’Automatique – EPFL Variant and Invariant States 11 / 13

  12. Incremental kinetic identification via rates or extents Computation of rates and extents Rates T † � n RV � r v , i ( t ) = N i ˙ a ( t ) (at least R measured species) n RV with ˙ a ( t ) = ˙ n a ( t ) − W in , a u in ( t ) + ω ( t ) n a ( t ) → differentiation of sparse and noisy signal n a ( t ) Vessel extents T † � � x r , i ( t ) = vRV a ( t ) (at least R measured species) N i n with n vRV a ( t ) := n a ( t ) − W in , a x in ( t ) − n 0 , a x ic ( t ) x r , i ( t ) = R i n a ( t ) (at least R + p + 1 measured species) → neither integration nor differentiation of the sparse and noisy signal n a ( t ) Laboratoire d’Automatique – EPFL Variant and Invariant States 12 / 13

  13. Conclusions Transformation of numbers of moles to “decoupled” vessel extents Transformation uses structural information N , W in , W m and knowledge of n 0 Effect of outlets is accounted for → concept of vessel extent Rates considered as time signals, e.g. r v ( t ) and not r v ( c , T ) Possible applications Homogeneous and fluid-fluid reaction systems Model reduction Static state reconstruction Incremental kinetic identification Heterogeneous catalytic reaction systems? Distributed reaction systems? Laboratoire d’Automatique – EPFL Variant and Invariant States 13 / 13

Recommend


More recommend