Valeri P. Frolov, Univ. of Alberta, Edmonton GC2018, Yukawa Institute, Kyoto, February 16, 2018
Based on: " Principal Killing strings in higher-dimensional Kerr-NUT-(A)dS spacetimes", Jens Boos and V.F, e-Print: arXiv:1801.00122 (2018); "Stationary black holes with st ringy hair", Jens Boos and V.F., e-Print: arXiv:1711.06357 (2017), (to appear in PRD); "Stationary strings and branes in the higher- dimensional Kerr-NUT-(A)dS spacetimes", David Kubiznak and V.F., JHEP 0802 (2008) 007; e-Print: arXiv:0711.2300.
"Black holes, hidden symmetries, and complete integrability", V.F., Pavel Krtous and David Kubiznak, Living Rev.Rel. 20 (2017) no.1, 6; e-Print: arXiv:1705.05482.
Solving stationary string equations in the Kerr-NUT-(A)dS background
Killing-Yano object s Conformal KY tensor (CKY) of rank in dims: p D 1 1 X ( ) X ( ) 0 , X p 1 D p 1 Killing tensor (KYT): 0; Closed conformal KY tensor (C CKY) : d 0 . 1 1 ( ) X ( ) X ( ), X p 1 D p 1 * * p D p *
Properties: • (KYT)=CCKY • (CCKY)=KYT • CCKY CCKY=CCKY
Principal ten so r = non-deg enera te rank 2 CCKY tenso r D 2 n 1 b h g g h c ab ca b cb c a ba D 1 n 1 h r l l x e ˆ e 1 n 1 0 0 g l l l l ( e e ) ˆ ˆ ˆ ˆ e e e e 1 0 0 ( l l ) 1 ( e e ) ( ) ( ) 1 ˆ ˆ ˆ ˆ e e e e 0 Darboux basis: ( l l e ). ˆ ˆ e e Non-degenerate: There are exactly non-vanishing n "eigenvalues" ( r x , ) that are functi onally independent in some domain. In this domain none f o the gradients of them is a null vector.
A metric which admits a principal tensor is off-shell Kerr-NUT-(A)dS metric. It contains arbitr n ary functi ons of 1 var iable. On-shell: Einstein equations are satisf ied Kerr- NUT-(A)dS so lution.
• is a primary Killing vector: L g L h 0; • ( ) j j 1 h h is a CCKY 2 j form; j • ( ) j ( ) j f h is a KY (D-2j) form • ( ) j bc c ab ( ) j a k 1 f f is a rank 2 Killing tensor; 1 D 2 j 1 ( ) j c c ( D 2 j 1) 1 D 2 j 1 • k , ( j 0 … n 1 m ) are commuting ( ) j ( ) j (secondary) Killing vectors; • k g ; (0) • Frobenius theorem: = , ; ( ) j j • ( , r x , , ) are canonical coordinates; j • are principal null d l irections; their integral lines are geodesics.
Geodesic equations are completely integrable: There exist integrals of motion for a free particle, D ( n ) first ord er p and second n or der p k p . ( ) j ( ) j Q: If instead of a particle one has a string: Are Nambu-Goto string equations completely integrable in the Kerr-NUT-( A)dS geometr y? A: In a general case - No. If a string is stat ionary - Yes.
Stationary strings in Kerr-NUT-(A)dS i Killing vector , coordin ates - ( , t y ) t 2 a b i g p , F , A , ab ab i 2 2 2 i 2 i j ds F dt ( Ady ) p d d y y i ij Nambu-Goto action for a string i j dy dy I tE E Fdl d F p . ij d d i String configuration ( ) is a geodesic in ( y D 1) dimensional space with metric p Fp . ij ij
If metric g admits the principal tensor it has ab n Killing vectors and rank 2 Killing tensors. n This gives D 2 n integrals of motion for a free parti cle. The reduced ref-shifted metric p does not admit ij a principal tensor, However, when is a primary Killing vector, it has n 1 Killing vectors and n rank 2 Killing tensors. This gives D 2 n 1 integrals of motion. Thus, the stationary string equa t io ns a re compl etely integrable . [ V .F . an d David Kubiznak (20 08)]
Principal Killing Strings l is a tangent vector to a principal null geodesic in the affine parametrization: 0, [ , ] 0. Frobenius theorem implies that a ST is foliated a A i by 2-D (Killing) s urfaces . Coordinates Y ( z , y ). i Equations of a given are y const . A z ( v ) are coordinates on , such that v
The Killing surface in the off -shell Kerr -NUT -(A)dS metric is minimal. 2 A B 2 2 Induced 2-D metric: d d z d z d 2 d v d . AB n are (D-2) m utually orthogonal unit vectors normal ( i ) to . The extrin s c i curvature is: a c b a b g n Y Y , g n Z 0. ( ) i AB ab ( ) i A c B ( ) i ab ( ) i b AB c b a b a b 2 a b Z Y Y . A c B a a a b a b b a b Z 2 F . a a 1 a b a a 2 F , ( ) b a 2
Incoming principal Killing string: ( ) j r , P ( ) r x const, j n 2( n 1 j ) r dr ( ) j P n X r ( ) n ˆ ( r x ) ( v r x ) k k 2( n 1) m r ˆ d d v a d d r j j X j 1 n 1 1 2( n 1 j ) ˆ d a d r d r j j j X n String equation in the null incoming coordinates 0 0 ˆ ˆ const x x const. j j
String's stress-energy tensor in in-coming coordinates ab ( a b ) 2 a b s T 2 q g ˆ ˆ 0 0 q q x ( x ) j j n 1 m ˆ ˆ 0 0 ( x x ) ( ) j j 1 j 1
Applications to Myers-Perry ST D 3 a b 16 M d S D 2 ab B a b 16 J d S ( ) i ( ) i ab B 2 J Ma . i ( ) i D 2 a b a b E T d , J T d b a i b i a D 1 D 1 H H 2 0 J M 0 a s i i ( ) i 2 M 1 0 J J exp( v v / ), v . ( ) i ( ) i i i 0 2 D 2 ( ) s i
J Projection( ) τ ˆ ˆ i i e and are unit vectors along and ; e x y and are dual unit i i i i m m 2 Ma ˆ δ i i 0 0 i forms. J ; x 0 a e , i i i i D 2 i 1 i 1 m ˆ ˆ 0 0 0 s F [ x e y e (1 ) z e ] i i i i z r i 1 m m ˆ τ δ 0 0 i j 0 0 0 i 0 F [ a a 0 (1 ) z ] s i i i i i i j 1 i 1
n n 1 2 string segments 2 "infinite captured strings"
Recommend
More recommend