vainshtein mechanism in a cosmological background in the
play

Vainshtein mechanism in a cosmological background in the most - PowerPoint PPT Presentation

Vainshtein mechanism in a cosmological background in the most general second-order scalar-tensor theory Rampei Kimura (Hiroshima Univ.) Asia Pacific School @ YITP Collaborators : Tsutomu Kobayashi (Kyoto Univ.) Kazuhiro Yamamoto (Hiroshima


  1. Vainshtein mechanism in a cosmological background in the most general second-order scalar-tensor theory Rampei Kimura (Hiroshima Univ.) Asia Pacific School @ YITP Collaborators : Tsutomu Kobayashi (Kyoto Univ.) Kazuhiro Yamamoto (Hiroshima Univ.) Based on : Phys. Rev. D 85, 024023 (2012) [arXiv:1111.6749]

  2. Contents Introduction and Brief review Vainshtein mechanism in the most general scalar-tensor theory Formulation Equations Specific cases (I, II, III) Conclusion

  3. Alternative : Modification of gravity General relativity Modified gravity ?? Solar system scale Horizon scale (Earth, Sun) (Large scale structure) (Cosmic acceleration)

  4. Alternative : Modification of gravity General relativity Modified gravity ?? Solar system scale Horizon scale (Earth, Sun) (Large scale structure) (Cosmic acceleration) Modified gravity must recover “general relativity behavior” at short distance

  5. Alternative : Modification of gravity General relativity Modified gravity ?? Solar system scale Horizon scale (Earth, Sun) (Large scale structure) (Cosmic acceleration) Modified gravity must recover “general relativity behavior” at short distance Screening mechanism

  6. Vainshtein Mechanism ✓ Example (kinetic gravity braiding) (Deffayet et al. ’ 10) L = M 2 r 2 2 R − 1 Pl 2( ∂φ ) 2 − ( ∂φ ) 2 ⇤ φ + L m [ ψ , g µ ν ] c 2 M Pl φ ( t, x ) → φ ( t )[1 + ϕ ( x )] r s = GM : Schwarzshild radius

  7. Vainshtein Mechanism self-accelerating solution ✓ Example (kinetic gravity braiding) (Deffayet et al. ’ 10) r c ∼ O ( H − 1 0 ) L = M 2 r 2 2 R − 1 Pl 2( ∂φ ) 2 − ( ∂φ ) 2 ⇤ φ + L m [ ψ , g µ ν ] c 2 M Pl φ ( t, x ) → φ ( t )[1 + ϕ ( x )] r s = GM : Schwarzshild radius

  8. Vainshtein Mechanism self-accelerating solution ✓ Example (kinetic gravity braiding) (Deffayet et al. ’ 10) r c ∼ O ( H − 1 0 ) L = M 2 r 2 2 R − 1 Pl 2( ∂φ ) 2 − ( ∂φ ) 2 ⇤ φ + L m [ ψ , g µ ν ] c 2 M Pl Solar system scale Horizon scale “Nonlinear” “Linear” φ ( t, x ) → φ ( t )[1 + ϕ ( x )] r s = GM : Schwarzshild radius

  9. Vainshtein Mechanism self-accelerating solution ✓ Example (kinetic gravity braiding) (Deffayet et al. ’ 10) r c ∼ O ( H − 1 0 ) L = M 2 r 2 2 R − 1 Pl 2( ∂φ ) 2 − ( ∂φ ) 2 ⇤ φ + L m [ ψ , g µ ν ] c 2 M Pl c ) 1 / 3 r V ∼ ( r s r 2 Vainshtein radius Solar system scale Horizon scale “Nonlinear” “Linear” φ ( t, x ) → φ ( t )[1 + ϕ ( x )] r s = GM : Schwarzshild radius

  10. Vainshtein Mechanism self-accelerating solution ✓ Example (kinetic gravity braiding) (Deffayet et al. ’ 10) r c ∼ O ( H − 1 0 ) L = M 2 r 2 2 R − 1 Pl 2( ∂φ ) 2 − ( ∂φ ) 2 ⇤ φ + L m [ ψ , g µ ν ] c 2 M Pl c ) 1 / 3 r V ∼ ( r s r 2 Vainshtein radius Solar system scale Horizon scale “Nonlinear” “Linear” d ϕ dr ∼ r s r 2 φ ( t, x ) → φ ( t )[1 + ϕ ( x )] r s = GM : Schwarzshild radius

  11. Vainshtein Mechanism self-accelerating solution ✓ Example (kinetic gravity braiding) (Deffayet et al. ’ 10) r c ∼ O ( H − 1 0 ) L = M 2 r 2 2 R − 1 Pl 2( ∂φ ) 2 − ( ∂φ ) 2 ⇤ φ + L m [ ψ , g µ ν ] c 2 M Pl c ) 1 / 3 r V ∼ ( r s r 2 Vainshtein radius Solar system scale Horizon scale “Nonlinear” “Linear” ✓ r ◆ 3 / 2 d ϕ dr ∼ r s d ϕ dr ⇠ r s ⌧ r s r 2 r 2 r 2 r V φ ( t, x ) → φ ( t )[1 + ϕ ( x )] r s = GM : Schwarzshild radius

  12. The most general scalar-tensor theory ✓ Horndeski found the most general Lagrangian whose EOM is second-order differential equation for φ and g μν (also known as Generalized galileon) Deffayet, Gao, Steer (2011) Kobayashi, Yamaguchi, Yokoyama, Prog. Theor. Phys. 126, 511 (2011) Horndeski, Int. J. Theor. Phys. 10,363 (1974) L 2 = K ( φ , X ) L 3 = � G 3 ( φ , X ) ⇤ φ L 4 = G 4 ( φ , X ) R + G 4 ,X [( ⇤ φ ) 2 � ( r µ r ν φ )( r µ r ν φ )] L 5 = G 5 ( φ , X ) G µ ν ( r µ r ν φ ) � 1  ( ⇤ φ ) 3 � 3( ⇤ φ )( r µ r ν φ ) ( r µ r ν φ ) 6 G 5 ,X � + 2( r µ r α φ )( r α r β φ )( r β r µ φ ) X = − ( ∂φ ) 2 / 2 , G iX = ∂ G i / ∂ X

  13. The most general scalar-tensor theory ✓ Horndeski found the most general Lagrangian whose EOM is second-order differential equation for φ and g μν (also known as Generalized galileon) Deffayet, Gao, Steer (2011) Kobayashi, Yamaguchi, Yokoyama, Prog. Theor. Phys. 126, 511 (2011) Horndeski, Int. J. Theor. Phys. 10,363 (1974) L 2 ⊃ ( ∂φ ) 2 , V ( φ ) K-essence term L 2 = K ( φ , X ) L 3 = � G 3 ( φ , X ) ⇤ φ L 4 = G 4 ( φ , X ) R + G 4 ,X [( ⇤ φ ) 2 � ( r µ r ν φ )( r µ r ν φ )] L 5 = G 5 ( φ , X ) G µ ν ( r µ r ν φ ) � 1  ( ⇤ φ ) 3 � 3( ⇤ φ )( r µ r ν φ ) ( r µ r ν φ ) 6 G 5 ,X � + 2( r µ r α φ )( r α r β φ )( r β r µ φ ) X = − ( ∂φ ) 2 / 2 , G iX = ∂ G i / ∂ X

  14. The most general scalar-tensor theory ✓ Horndeski found the most general Lagrangian whose EOM is second-order differential equation for φ and g μν (also known as Generalized galileon) Deffayet, Gao, Steer (2011) Kobayashi, Yamaguchi, Yokoyama, Prog. Theor. Phys. 126, 511 (2011) Horndeski, Int. J. Theor. Phys. 10,363 (1974) L 2 ⊃ ( ∂φ ) 2 , V ( φ ) K-essence term L 2 = K ( φ , X ) Cubic galileon term L 3 = � G 3 ( φ , X ) ⇤ φ L 3 ⊃ ( ∂φ ) 2 ⇤ φ L 4 = G 4 ( φ , X ) R + G 4 ,X [( ⇤ φ ) 2 � ( r µ r ν φ )( r µ r ν φ )] L 5 = G 5 ( φ , X ) G µ ν ( r µ r ν φ ) � 1  ( ⇤ φ ) 3 � 3( ⇤ φ )( r µ r ν φ ) ( r µ r ν φ ) 6 G 5 ,X � + 2( r µ r α φ )( r α r β φ )( r β r µ φ ) X = − ( ∂φ ) 2 / 2 , G iX = ∂ G i / ∂ X

  15. The most general scalar-tensor theory ✓ Horndeski found the most general Lagrangian whose EOM is second-order differential equation for φ and g μν (also known as Generalized galileon) Deffayet, Gao, Steer (2011) Kobayashi, Yamaguchi, Yokoyama, Prog. Theor. Phys. 126, 511 (2011) Horndeski, Int. J. Theor. Phys. 10,363 (1974) L 2 ⊃ ( ∂φ ) 2 , V ( φ ) K-essence term L 2 = K ( φ , X ) Cubic galileon term L 3 = � G 3 ( φ , X ) ⇤ φ L 3 ⊃ ( ∂φ ) 2 ⇤ φ Einstein-Hilbert term L 4 = G 4 ( φ , X ) R + G 4 ,X [( ⇤ φ ) 2 � ( r µ r ν φ )( r µ r ν φ )] L 4 ⊃ ( M 2 Pl / 2) R L 5 = G 5 ( φ , X ) G µ ν ( r µ r ν φ ) � 1  ( ⇤ φ ) 3 � 3( ⇤ φ )( r µ r ν φ ) ( r µ r ν φ ) 6 G 5 ,X � + 2( r µ r α φ )( r α r β φ )( r β r µ φ ) X = − ( ∂φ ) 2 / 2 , G iX = ∂ G i / ∂ X

  16. The most general scalar-tensor theory ✓ Horndeski found the most general Lagrangian whose EOM is second-order differential equation for φ and g μν (also known as Generalized galileon) Deffayet, Gao, Steer (2011) Kobayashi, Yamaguchi, Yokoyama, Prog. Theor. Phys. 126, 511 (2011) Horndeski, Int. J. Theor. Phys. 10,363 (1974) L 2 ⊃ ( ∂φ ) 2 , V ( φ ) K-essence term L 2 = K ( φ , X ) Cubic galileon term L 3 = � G 3 ( φ , X ) ⇤ φ L 3 ⊃ ( ∂φ ) 2 ⇤ φ Einstein-Hilbert term L 4 = G 4 ( φ , X ) R + G 4 ,X [( ⇤ φ ) 2 � ( r µ r ν φ )( r µ r ν φ )] L 4 ⊃ ( M 2 Pl / 2) R L 5 = G 5 ( φ , X ) G µ ν ( r µ r ν φ ) Non-minimal derivative coupling � 1  L 5 � G µ ν r µ φ r ν φ ( ⇤ φ ) 3 � 3( ⇤ φ )( r µ r ν φ ) ( r µ r ν φ ) 6 G 5 ,X (Germani et al. 2011; Gubitosi, Linder 2011) � + 2( r µ r α φ )( r α r β φ )( r β r µ φ ) X = − ( ∂φ ) 2 / 2 , G iX = ∂ G i / ∂ X

  17. QUESTION :

  18. QUESTION : Does Vainshtein mechanism work in the most general second-order scalar-tensor theory in a cosmological background???

  19. Formulation Q ≡ H δφ ˙ φ ✓ In field equations, ✏ = Ψ , Φ , and Q ⌧ 1 ⇢ EOM ⊃ ” mass terms ” , ” time derivative terms ” , ◆ n ◆ m ✓ ✓ � L ( t ) 2 @ 2 ✏ L ( t ) @✏ , . . .

  20. Formulation Q ≡ H δφ ˙ φ ✓ In field equations, ✏ = Ψ , Φ , and Q ⌧ 1 Neglect ⇢ EOM ⊃ ” mass terms ” , ” time derivative terms ” , ◆ n ◆ m ✓ ✓ � L ( t ) 2 @ 2 ✏ L ( t ) @✏ , . . .

  21. Formulation Q ≡ H δφ ˙ φ ✓ In field equations, ✏ = Ψ , Φ , and Q ⌧ 1 Quasi-static approximation Neglect ∂ t ⌧ ∂ x ⇢ EOM ⊃ ” mass terms ” , ” time derivative terms ” , ◆ n ◆ m ✓ ✓ � L ( t ) 2 @ 2 ✏ L ( t ) @✏ , . . .

  22. Formulation Q ≡ H δφ ˙ φ ✓ In field equations, ✏ = Ψ , Φ , and Q ⌧ 1 Quasi-static approximation Neglect ∂ t ⌧ ∂ x ⇢ EOM ⊃ ” mass terms ” , ” time derivative terms ” , ◆ n ◆ m ✓ ✓ � L ( t ) 2 @ 2 ✏ L ( t ) @✏ , . . . L ( t ) ∼ O ( H − 1 ) higher-order terms

  23. Formulation Q ≡ H δφ ˙ φ ✓ In field equations, ✏ = Ψ , Φ , and Q ⌧ 1 Quasi-static approximation Neglect ∂ t ⌧ ∂ x ⇢ EOM ⊃ ” mass terms ” , ” time derivative terms ” , ◆ n ◆ m ✓ ✓ � L ( t ) 2 @ 2 ✏ L ( t ) @✏ , . . . L ( t ) ∼ O ( H − 1 ) higher-order terms Picking up the terms like @ 2 ✏ , ( @ 2 ✏ ) 2 , ( @ 2 ✏ ) 3 , ( @ 2 ✏ ) 4 , �

  24. Traceless part of the Einstein Equations r 2 ( F T Ψ � G T Φ � A 1 Q ) B 1 B 3 2 a 2 H 2 Q (2) + r 2 Φ r 2 Q � ∂ i ∂ j Φ ∂ i ∂ j Q � � = a 2 H 2 � 2 � ( ∂ i ∂ j Q ) 2 Q (2) ⌘ r 2 Q �

  25. Traceless part of the Einstein Equations r 2 ( F T Ψ � G T Φ � A 1 Q ) B 1 B 3 2 a 2 H 2 Q (2) + r 2 Φ r 2 Q � ∂ i ∂ j Φ ∂ i ∂ j Q � � = a 2 H 2 Non-linear terms � 2 � ( ∂ i ∂ j Q ) 2 Q (2) ⌘ r 2 Q �

Recommend


More recommend