The P h y s i c s of the T e s l a Magnifying T r a n s m i t t e r , and the T r a n s m i s s i o n of E l e c t r i c a l Power Without Wires by A n d r i j a P u h a r i c h , M.D., LLD.
ABSTRACT 1 . The T e s l a Magnifying T r a n s m i t t e r (TMT) i s an e l e c t r i c a l o s c i l l a t o r c o n s i s t i n g of a f l a t h o r i z o n t a l primary i n d u c t o ^ L on e a r t h coupled to a secondary, and a c a p a c i t o r b a l l C which l a t t e r i s e l e v a t e d above the e a r t h plane a t a d i s t a n c e which i s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA h the wavelength of the resonant frequency of the system. 2. The LCR system i s resonant to the fundamental frequency of the e a r t h / atmosphere which i s e s s e n t i a l l y a g i a n t c a p a c i t o r system. 3. The TMT generates e l e c t r i c a l p o t e n t i a l s of the order of 100,000,000 v o l t s peak to peak, w i t h c u r r e n t s of the order of 2-4 KAmps. 4. The TMT b r o a d c a s t s e l e c t r i c a l power ( w i r e l e s s ) to the T e s l a Magnifying R e c e i v e r (TMR) s t a t i o n s a t d i s t a n c e s of hundreds of m i l e s from the source. 5. T e s l a claimed the f o l l o w i n g e f f e c t s : a. The primary path of the w i r e l e s s power t r a n s m i s s i o n from TMT to the TMR i s through the e a r t h which becomes a conductor of e l e c t r i c i t y . ' b. The secondary path of the w i r e l e s s power t r a n s m i s s i o n from TMT to TMR i s through the atmosphere to c l o s e the c i r c u i t . c . The e l e c t r i c a l power i s t r a n s m i t t e d a t l e s s than 1 % l o s s . d. He measured e l e c t r i c a l s t a t i o n a r y waves i n the e a r t h . e. He measured s i g n a l s t r a v e r s i n g the e a r t h a t v e l o c i t i e s 27 times the speed of l i g h t , c, f . The system as d e s c r i b e d , and the e f f e c t s claimed were a l l v e r i f i e d e x p e r i m e n t a l l y by T e s l a and h i s c o l l e a g u e s , i n 1904. No one has t r i e d to r e p e a t T e s l a ' s work s i n c e 1904. 6. There has been g r e a t r e l u c t a n c e on the p a r t of e n g i n e e r s and p h y s i c i s t s to accept T e s l a ' s data, l a r g e l y because such d a t a cannot be r e c o n c i l e d w i t h p h y s i c a l theory i n vogue between 1904 to 1976, and the experiments a r e not easy to r e p e a t . 7. A t h e o r e t i c a l e x p l a n a n t i o n of T e s l a ' s data on h i s TMT i s g i v e n as f o l l o w s : - 4 -
The L i e n a r d - W i e c h e r t s o l u t i o n of the Maxwell equations f o r electromagnetism show t h a t the propagated EM wave i s a time d e r i v a t i v e of the v e l o c i t y , c, known as the r e t a r d e d p o t e n t i a l . I n the TMT the r e t a r d e d p o t e n t i a l i s i d e n t i f i e d w i t h the atmospheric r a d i a t i o n of the EM s i g n a l from the e l e v a t e d c a p a c i t o r b a l l C. The L i e n a r d - W i e c h e r t s o l u t i o n a l s o shows the e x i s t e n c e of a wave f a s t e r than c known as the advance p o t e n t i a l . S i n c e t h i s i s the imaginary s o l u t i o n , and does not have p h y s i c a l d e t e c t i b i l i t y , i t i s u s u a l l y ignored. However, i f the advance p o t e n t i a l i s t r e a t e d by the de B r o g l i e equation a s a phase v e l o c i t y wave we can v i s u a l i z e i t as a " h o l e " or t u b u l a r wave guide moving f a s t e r than c, f o r the r e t a r d e d p o t e n t i a l which i s slower than c, the two p o t e n t i a l s being ISO" out of phase. T h i s " t u b u l a r wave guide" can be analyzed by means of the D i r a c equation ( f o r the e l e c t r o n ) which shows i t to be a r o t a t i n g f i e l d w i t h the p r o p e r t i e s of magnetism and s p i n . At high v o l t a g e s , c a . 100 Mev., t h e r e i s an i n t e r - a c t i o n between the advance p o t e n t i a l wave guide f i e l d , and the r e t a r d e d p o t e n t i a l photonic f i e l d such that p a r t i c l e p a i r s ( e l e c t r o n - p o s i t r o n ) a r e c r e a t e d , or the p a i r s a r e a n n i h i l a t e d to y i e l d photonic r a d i a t i o n . I n dense m a t e r i a l s such a s that of the e a r t h t h i s r e a c t i o n i s augmented by the presence of atomic n u c l e i . Thus t h e o r e t i c a l l y the TMT can t r a n s f e r l a r g e amounts of c u r r e n t u s i n g the e a r t h as a conductor, and under a p p r o p r i a t e c o n d i t i o n s of resonance (frequency and v o l t a g e ) g a i n (or m a g n i f i c a t i o n ) of power i s f e a s i b l e . -5"-
I n order to understand t h e workings of the T e s l a Magnifying T r a n s m i t t e r (TMT), ,we w i l l p r e s e n t i n an elementary form some of the b a s i c concepts of e l e c t r i c i t y as formulated by Maxwell (from E n c y c l o p a e d i a B r i t . , V.6, p. 660 f f ) . We r e l a t e e l e c t r o m a g n e t i c r a d i a t i o n to i t s source by means of the p o t e n t i a l s as g i v e n i n t h e two Maxwellian equations where: B = Magnetic = Vector P o t e n t i a l (A) E = E l e c t r i c = S c a l a r P o t e n t i a l ((j)) B = c u r l A (1) 9A E = - grad ( j ) - — ( 2 ) 9t The other two Maxwell equations become: — = - p/e 9A V^(t) + d i v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ( 3 ) dt " 1 9A 1 9 ( | ) V X (V x A) + + grad — = y j ( 4 ) , 2 " " ' 9t " The d i v e r g e n c e of A and the time d e r i v a t i v e of ( J ) a r e not s p e c i f i e d by t h e i r d e f i n i t i o n s i n terms of the f i e l d s , and may be chosen so t h a t , 194. d i v A + = 0 ( 5 ) T h i s i s c a l l e d the L o r e n t z c o n d i t i o n on the p o t e n t i a l s . I f the L o r e n t z c o n d i t i o n i s s a t i s f i e d , the p o t e n t i a l s a r e s o l u t i o n s of the second-order inhomogenous wave e q u a t i o n s , -6-
1 a^cj) (6) - p/e , 0 1 a^A V^A - (7) The f i e l d s e x c i t e d by the charge P, and c u r r e n t j , source s a r e determined by d i f f e r e n t i a t i n g the p o t e n t i a l s , which a r e p a r t i c u l a r s o l u t i o n s of t h e s e e q u a t i o n s . I t was f i r s t shown by Ludvig V a l e n t i n Lorenz,a Danish p h y s i c i s t , t h a t s o l u t i o n s may be w r i t t e n f o r m a l l y as volume i n t e g r a l s over the source d i s t r i b u t i o n s e v a l u - ated at the r e t a r d e d time, equal to the time ( t ) f o r which the f i e l d i s d e s c r i b e d minus the d i s t a n c e t r a v e l l e d ( r ) d i v i d e d by the v e l o c i t y , or t ' = t - L , (8) c which would a l l o w the t r a n s m i s s i o n of the f i e l d s from the source w i t h v e l o c i t y c; t h a t i s . p(x', y', z', t - r / c ) (9) (})(x, y, z, t ) = dV , 47Te 1 j ( x ' , y', z', t - r / c ) = _ dV A(x, y, z, t ) (10) 4iT r i n which r i s the d i s t a n c e from a source point (primed c o o r d i n a t e s ) to the f i e l d point ( p l a i n c o o r d i n a t e s ) . These a r e the r e t a r d e d p o t e n t i a l s ; mathema- t i c a l l y the advanced p o t e n t i a l s , w i t h the i n t e g r a l s e v a l u a t e d a t t + r / c , a r e e q u a l l y v a l i d , but i n the c l a s s i c a l r a d i a t i o n theory p h y s i c a l s i g n i f i c a n c e i s not a t t a c h e d to such s o l u t i o n s . The reason f o r t h i s l a c k of n o t i c e of the advanced p o t e n t i a l s i s t h a t they move a t speeds g r e a t e r than c and t h e r e f o r e - 7 -
Recommend
More recommend